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Quantum-Classical Correspondence in the Wave Functions of Andreev Billiards
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We present a classical and quantum mechanical study of an Andreev billiard with a chaotic normal dot.
We demonstrate that the nonexact velocity reversal and the diffraction at the edges of the normal-
superconductor contact render the classical dynamics of these systems mixed indicating the limitations of
a widely used retracing approximation. We point out the close relation between the mixed classical phase
space and the properties of the quantum states of Andreev billiards, including periodic orbit scarring and
localization of the wave function onto other classical phase space objects such as intermittent regions and
quantized tori.
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Wave function phenomena in closed and open quantum
dot systems have attracted much attention in recent years.
Besides the ongoing theoretical interest in a simple yet
detailed description of scarring [1,2], a range of phe-
nomena has been studied including the connection between
conductance oscillations, transmission resonances of bal-
listic semiconductor dots and microwave cavities, light
emission from dielectric cavities, and the localization of
the wave function onto classical phase space objects [3,4]
such as Kolmogorov-Arnold-Moser (KAM) islands, peri-
odic orbits [4], and hierarchical regions [5]. It has also been
pointed out that certain states of a closed quantum dot,
associated with KAM islands or bouncing-ball trajectories,
actually survive the coupling of the dot to external leads
resulting in measurable transport effects [4,6].

Systems consisting of a ballistic quantum dot coupled to
a superconductor, which are commonly called Andreev-
billiards (ABs) [7,8] raise new questions of quantum-
classical correspondence addressed by only a few works
[9–16] beforehand. The key physical process taking place
in normal-superconductor (N-S) hybrid nanostructures is
the Andreev reflection [17], whereby electronlike quasi-
particles with energies " (measured from the Fermi energy
EF) are coherently scattered into holes (and vice versa) at
the N-S interface if " is smaller than the superconducting
gap �. For " � 0 the Andreev reflected electrons (holes)
perfectly retrace their classical trajectories as holes (elec-
trons). For " > 0 the velocities of the quasiparticles are not
exactly reversed because of the difference in their magni-
tudes of momenta, consequences of which have not at-
tracted much attention in the literature [9,10,16].

In ABs with chaotic normal dots the limitations of this
widely used retracing approximation are expected to sur-
face for " > 0. Namely, the angle of initial misalignment
�"=EF of the velocities of the electrons and holes can
grow up to unity between two Andreev reflections when
the time scale �diff � 1=� ln�EF="� is comparable to the
dwell time �D (� is a Lyapunov exponent). One notable
exception, in which the consequences of the nonexact ve-
locity reversal were investigated is the paper by Silvestrov
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et al. [10]. They studied an Andreev billiard with a chaotic
normal dot and found that even though the motion in the
normal dot could be characterized by nonzero Lyapunov
exponents, the existence of an adiabatic invariant in the
N-S system to good approximation confines the electron-
hole orbits to tori. Nevertheless, the exponential diver-
gence of nearby trajectories does manifest itself through
a gap in the low energy density of states and through the
eigenfunctions of the system, which were predicted to
exhibit a peculiar localization property, different from
those known in normal billiards. However, no quantum
calculations were performed to support the latter finding.

Recently, Wiersig [18] has shown that the diffraction
occurring at the points separating the normal and super-
conducting segments of the dot boundary (coined ‘‘critical
points’’) also plays an important role in the classical dy-
namics of ABs. Electrons (holes) hitting the boundary at
nearby points belonging to different types of segment will
undergo either Andreev or normal reflection and will be
scattered into different quasiparticle states (i.e., into holes
or electrons). Owing to the special geometry this diffrac-
tion effect was not observed in Ref. [10].

In this Letter we show that, in a more general case, the
interplay of the nonexact velocity reversal and the diffrac-
tion at the critical points leads to the breakup of the
(adiabatic) tori in at least certain parts of the phase space
[see Figs. 1(a) and 1(b)] rendering the classical dynamics
mixed. While it has been known for a long time that an
applied magnetic field can render the ABs chaotic [7,15],
to our knowledge the possibility that the dynamics of ABs
can be irregular even for zero magnetic field has not yet
been addressed in the literature. Furthermore, we point out
the close relation between the mixed classical phase space
and the properties of the quantum states of ABs. What
makes these N-S hybrid systems additionally interesting
and novel in the realm of quantum chaos studies is that the
wave function is spinor and not scalar, as in normal bil-
liards. We calculate, for the first time, the exact quantum
eigenfunctions of a two-dimensional AB with chaotic nor-
mal dot. Using the Wigner transform of the eigenstates we
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FIG. 1 (color online). The Poincaré section of the SA billiard
for h � 0:58 (a) and h � 0 (b). (For other parameters see
Ref. [22].) Each dot represents a starting point of an electron
trajectory; the diamonds (�) (red online) and boxes (�) (blue
online) correspond to very elongated regular islands. The torus
shown with diamonds in (a) is projected onto real space (c).
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find that most of them can be associated either with the
regular or the chaotic regions of the energy surface.

The particular system used in our numerical calculations
is the Sinai-Andreev (SA) billiard [19]. It consists of a
Sinai-billiard shaped normal dot and an attached (infinite)
superconducting lead [see Fig. 1(c) for the geometry].
First, we consider the classical dynamics. Figs. 1(a) and
1(b) shows the Poincaré section (PS) which is defined as
follows. The coordinates of each point in PS are the
position y of the electron starting from the N-S interface
and the tangential velocity component vy in units of ve �

vF
��������������������
1� "=EF

p
, where vF is the Fermi velocity (y is mea-

sured from the lower corner of the N-S interface). As can
be observed, the PS resembles the Poincaré maps of ge-
neric normal systems with mixed classical dynamics. In
large regions of the energy surface the motion is chaotic,
while stability is preserved in islands around such unstable
periodic orbits of the isolated normal system, which hit the
N-S interface at a right angle. We observed similar struc-
tures for all � <�0. We emphasize that in contrast to
Ref. [10], these phase space structures are regular islands
not only in the adiabatic approximation. Depending on the
instability of the orbit and the value of "=EF, the presence
of the superconductor can indeed stabilize the motion, as
can be checked by computing the stability matrix of the
corresponding electron-hole orbit. Most of these islands
are extremely elongated [see, e.g., Figs. 1(a) and 1(b),
where they are denoted by diamonds and boxes]. More-
over, considering the bunch of electron trajectories lying
on a particular torus, its projection onto the real space is
‘‘squeezed down’’ away from the N-S interface [Fig. 1(c)].
Both phenomena are consequences of the exponential
divergence of nearby trajectories in the normal dot [10].
For islands centered on the least unstable orbits (e.g., the
one at h � 0) these effects are less pronounced [see the
large island in Fig. 1(b)].
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Furthermore, strips of regular, intermittent-like motions
can also be observed in Fig. 1(a), in particular, around
vy=ve � 0:7, 0.3, �0:2, and �0:5. These regions corre-
spond to such initial conditions for which the electron and
hole trajectories will only be slightly different, but this
nearly periodic orbit will slowly drift in phase space
[9,10] [see also Fig. 4(b)]. This dynamics resembles the
intermittent behavior in normal billiards [20] where this
near-integrable motion usually evolves in the vicinity of
tori or isolated periodic orbits. In the present case
[Fig. 1(a)], however, it is a consequence of the retroreflec-
tion mechanism and is therefore a peculiarity of ABs.
Nevertheless, owing to this drift either the electron or the
hole trajectory will eventually reach the edge of the N-S
interface and then by hitting the normal wall instead of the
superconductor, escapes to the chaotic sea.

In what follows, we show how the properties of the
classical phase space leave their fingerprints on the eigen-
states of Andreev billiards. First, we briefly summarize
the quantum treatment of the system. The spinor wave
function  �r� � �u�r�; v�r�	T (with u�r� electron and
v�r� hole components) of the N-S hybrid systems satisfies

the Bogoliubov–de Gennes equations Ĥ �r� � " �r�,
where Ĥ � Ĥ 0�z � ��r��x, and Ĥ 0 � �@

2=2mr2 �
� is the single-particle Hamiltonian with Dirichlet bound-
ary conditions at the normal walls. Here � is the chemical
potential and �z;�x are Pauli matrices. We assume that the
superconducting pair potential is ��r� � �0 constant in-
side the lead and zero in the N region [8]. The calculation
of the wave function requires two steps: first we obtain the
energy levels of the SA billiard using a quantum mechani-
cally exact secular equation which can be derived invoking
the scattering approach of Ref. [8]. The method also fur-
nishes us with the wave function in the superconducting
lead and at the N-S interface. Then the boundary integral
method is employed to find the wave function in the normal
dot [21]. We work in the regime �N 
 ET 
 �0 
 EF [8]
where �N is the mean level spacing of the isolated normal
dot and ET is the Thouless energy [22].

The classical-quantal correspondence of phase space
structures and eigenstates of a given system can be studied
with the help of the Wigner function [23]. In order to
compare the Wigner function with the PS, we calculated
the projection of the Wigner function [24] of both the
electron and the hole components of the wave function
onto the PS:

W P�y; py� �
1
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2

�

evaluated at the N-S interface (i.e., x � 0), � is either u�r�
or v�r� and py is the parallel (to the interface) component
of the momentum. The Wigner function is not positive
definite and usually exhibits rapid oscillations that can
obscure the physical content. For this reason, like in
Ref. [24], we smoothed the projection W P with a
Gaussian, which was chosen narrower than the minimum
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uncertainty Gaussian. Note that W P is symmetric in py,
since the system is time reversal invariant. This symmetry
is absent in the Poincaré map, because incidental electrons
(holes) are not taken into account.

In common with normal billiards, most of the eigen-
states of the SA billiards can be classified as ‘‘chaotic’’ or
‘‘regular’’ [24–26]. The chaotic eigenstates can further be
subdivided into twogroups: (i) ergodic-like, and (ii) scarred
states. Regarding the regular states, they either can be
associated with the intermittent-like regions of the phase
space or with quantized tori. We now consider each case.

For ergodic-like eigenstates [an example is shown in
Fig. 2(a)] both the electron and the hole components of
the wave function seems to cover the normal dot in a
roughly uniform way. Nevertheless, they display different
interference pattern which translates also into the corre-
sponding projections of the Wigner functions. Examining
Figs. 1(a) and 2(b) one can see that W P has high amplitude
in such regions, which corresponds to chaotic regions in
the PS. This observation is reinforced by the good agree-
ment between the probability distribution of the scaled
local densities ze�r�, zh�r� and the Porter-Thomas distribu-
tion P �z� � 1=

���������
2�z
p

exp��z=2� shown in Fig. 2(c). Here
ze�r� � �A=N e�ju�r�j2, where N e �

R
ju�r�j2d2r, and

the integration is performed over the area A of the normal
dot [an analogous definition applies for the hole density
zh�r�]. Both the electron and the hole components of
chaotic eigenstates of ABs can thus be considered, simi-
larly to the eigenstates of chaotic normal billiards [23,27],
as being a superposition of infinite number of plane waves
with fixed wave number, but with random directions and
amplitudes.
FIG. 2 (color online). The probability densities of the electron
(juj2) and hole (jvj2) components of a chaotic eigenstate
("=�0 � 0:060 395) of the SA billiard (a). The corresponding
smoothed projections of the Wigner function onto the PS (b) in
units of y=W and py=pe, py=ph for the electron and hole com-
ponents, respectively. Here pe � mve and ph�"� � pe��"�.
Eight equally spaced positive contours [dark gray (red online)
lines] and five negative contours [light gray (green online) lines]
are plotted. The distribution of the scaled probabilities ze [dark
gray (red online) line], zh [light gray (green online) line] and the
Porter-Thomas distribution [black (blue online) line] (c).

23700
The old wisdom of the quantum chaos: ‘‘the scars are
scarce’’ seems to hold also for ABs. Out of 99 eigenstates
of the system with geometrical parameters listed in the
caption of Fig. 1(a), only 2 can be classified as scarred; one
of them is shown in Fig. 3(a) along with the periodic orbit
that scars the electron component [Fig. 3(b)]. We call these
states ‘‘genuine Andreev-scarred’’ to distinguish them
from the other type of states which are decoupled from
the superconductor [14] and in certain cases also show
enhancement over periodic orbits [see Figs. 3(c) and
3(d)]. In the case of decoupled eigenstates the amplitude
of the wave function at the N-S interface is small and the
probability of finding the quasiparticle in either the elec-
tron or hole state inside the dot is enhanced. For the
example shown in Fig. 3(d), integrating jv�r�j2 over the
area of the billiard one finds that this probability is 91%
whereas only 7% for the electron component (and 2%
corresponds to the probability of quasiparticles in the
superconductor). In contrast, for the eigenstate shown in
Fig. 3(a) the wave function has an apparently finite value at
the N-S interface and the probabilities are 56% (electrons)
and 31% (holes).

Regarding the regions of regular motion, we found that
both the intermittent-like parts of the phase space and the
regular islands can give rise to quantum eigenstates. The
electron and the hole components of regular eigenstates
display very similar interference patterns and the proba-
bilities of the electron and hole state in the dot have close
values. Furthermore, the localization of both the eigen-
function and the corresponding smoothed W P onto the
underlying phase space structure can be observed. As for
the islands of stability shown in Fig. 1(a), they enclose a
very small area and thus for the numerically accessible
wavelengths they are not resolved quantum mechanically.
A much more amenable system for studying the correspon-
dence between quantum eigenstates and a regular island
FIG. 3 (color online). The probability densities of the electron
(juj2) and hole (jvj2) components of a scarred eigenstate
("=�0 � 0:883 23) of the SA billiard (a) and the corresponding
unstable periodic orbit (b). The probability densities of a de-
coupled state at "=�0 � 0:429 01 (c) and the marginally stable
periodic orbit family over which the hole component shows
enhancement (d).
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FIG. 4 (color online). The probability density of the electron
(juj2) and hole (jvj2) components of an intermittent eigenstate
("=�0 � 0:446 52) of the SA billiard (a). One of the slowly
drifting electron-hole orbits during the intermittent-like
motion (b) which form the regular strip around vy=ve � �0:2
in Fig. 1(a). The orbit comprises electron [dark gray (red online)]
and hole [light gray (green)] trajectories. The smoothed projec-
tions W P for the electron and the hole components of the
eigenstate (c). Eight equally spaced positive contours [dark
gray (red online) lines] and one negative contour [light gray
(green online) line] are plotted. The black (blue online) curve
marks the location of that region of the PS, in which the drifting
electron-hole orbits, like the one in (b), stay longer than �H (see
text). The electron component of a wave function localized onto
a quantized torus when h � 0 (d). The hole component is almost
identical and thus not shown here.
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can be obtained by attaching the superconducting lead at
h � 0, since in this case the emerging regular island is
larger [see Fig. 1(b)]. Our findings on the eigenfunction
properties listed above are based on studying this case [see
also Fig. 4(d)], which is, however, not treated here in more
detail for the lack of space. Finally, we found that as
expected, those intermittent-like regions support quantum
eigenstates, which correspond to staying times longer than
the Heisenberg time �H � 2@=�N. An example is shown in
Fig. 4(a), while Fig. 4(c) shows that the smoothed W P also
has high amplitude in the corresponding region.

In summary, we investigated the quantal-classical cor-
respondence in Andreev billiards with a chaotic normal
dot. We showed that the interplay of critical points and
nonexact velocity reversal can render the classical dynam-
ics nonintegrable not only for finite but even for zero
magnetic field. It was also shown that the eigenstates of
the system can be classified as chaotic or regular corre-
sponding to different regions of phase space. This implies
that while the retracing approximation has been proved to
be useful in understanding the energy dependence of the
density of states [14,28], it may not be adequate when
addressing the properties of individual eigenstates.
Experimentally, the eigenstates of the Andreev billiards
might be studied using scanning tunneling probe [29], and
those which comprise quasiparticle density enhancement
in certain part of the dot should be discernible from the
ergodic ones.
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