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Parametric Amplification of the Dynamic Radiation Force of Acoustic Waves in Fluids
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We report on parametric amplification in dynamic radiation force produced by a bichromatic acoustic
beam in a fluid. To explain this effect we develop a theory taking into account the nonlinearity of the fluid.
The theory is validated through an experiment to measure the dynamic radiation force on an acrylic
sphere. Results exhibit an amplification of 66 dB in water and 80 dB in alcohol as the difference of the
frequencies is increased from 10 Hz to 240 kHz.
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Acoustic radiation force in fluids is a phenomenon that
has been investigated for over a century [1]. It results from
variations in energy and momentum of the wave as a
consequence of scattering, attenuation, or distortion by
nonlinear effects. This force is similar to the optical radia-
tion pressure exerted by electromagnetic waves on respon-
sive particles [2]. Radiation force can be either static or
dynamic with respect to its time dependency. Static radia-
tion force is a time-averaged quantity produced by a
monochromatic wave that corresponds to the dc compo-
nent in the spectrum of the stress (pressure) [3]. Dynamic
radiation force can be generated by a bichromatic acoustic
wave. This force is associated to the difference frequency
component in the spectrum of the stress [4].

One of the first applications of dynamic radiation force
was devised in 1928 by Sivian [5] to measure acoustic
power on a suspended disk. In 1953, Macnamara et al. [6]
developed a method based on this force to measure ab-
sorption in liquids. After these pioneer applications, dy-
namic radiation force passed unnoticed until late 1970’s. In
the last three decades, it has been applied for measuring
ultrasound power of transducers [7], inducing oscillation in
bubbles [8] and liquid drops [9], and exciting modes in
capillary bridges [10]. Furthermore, dynamic radiation
force is the underlying principle of some elastography
imaging techniques such as shear wave elasticity imaging
[11] and vibro-acoustography [12].

Despite early applications, dynamic radiation force was
only recently investigated in theoretical grounds. Mitri
et al. [13] calculated it on elastic cylinders. He also studied
the force produced by a bichromatic standing plane wave
[14]. Silva et al. [4] obtained the dynamic radiation force
on elastic spheres which was confirmed in an experiment
realized by Chen et al. [15]. We emphasize these results are
only valid when the difference between the fundamental
frequencies of the wave is very narrow. So far, no one has
taken thoroughly into account the influence of the fluid
nonlinearity in dynamic radiation force. The nonlinearity
of the fluid is described by the thermodynamic relation p /
06=96(23)=234301(4) 23430
��1�B=A�, where p and � are, respectively, the pressure and
the density of the fluid, and B=A> 0 is commonly used in
acoustics as the nonlinear parameter [16]. It is worthy to
note that static radiation force in an ideal fluid does not
depend on the nonlinearity parameter B=A [17]. On the
other hand, one may ask, ‘‘How does dynamic radiation
force depend on the nonlinearity of the fluid?’’

In this Letter we undertake this question. Our analy-
sis unfolds that dynamic radiation force may achieve a
regime of parametric amplification. The concept of para-
metric amplification arose in radio engineering and is
widely known in optics [18]. In acoustics, parametric
amplification can also be understood as follows. The
mixture of two waves of differing angular frequencies
!1 and !2 (!2 >!1) generates two new waves [19,20];
one of which has frequency equal to !1 �!2, while the
other arises with the difference frequency!21 � !2 �!1.
To demonstrate the parametric regime in dynamic radi-
ation force, we calculate this force on a rigid sphere taking
into account the nonlinearity of the fluid. An experiment
using a laser vibrometer is designed to measure the dy-
namic radiation force on an acrylic sphere immersed in
degassed water and ethyl alcohol. Results show an ampli-
fication of this force of up to 66 dB in water and 80 dB in
alcohol as the difference frequency varies from 10 Hz to
240 kHz.

Consider a homogeneous and isotropic fluid with adia-
batic speed of sound c0, in which thermal conductivity and
viscosity are neglected. The fluid has infinite extent and is
characterized by the following acoustic fields: pressure p,
density �, and particle velocity v � �r�. The function �
is the velocity potential and r is the gradient operator.
These fields are function of the position vector r and time t.
At rest, these quantities assume constant values p � p0,
� � �0, and v � 0. The acoustic fields are governed by the
dynamic equations of ideal fluids. By using the regular
perturbation technique, one can expand the velocity poten-
tial in terms of the Mach number "� 1 as � � "��1� �
"2��2� �O�"3�. Any analysis of radiation force has to be
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done considering at least the second-order terms of this
expansion.

The excess pressure in the fluid can be written as p�
p0 � p�1� � p�2� �O�"3�, where [21]
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are the acoustic and the second-order pressure fields, re-
spectively. The first two terms in the right-hand side of
Eq. (2) depend only on ��1�. They correspond to the
Lagrangian density of the wave. As we shall see, the
potential ��1� does not depend on the nonlinearity of the
fluid, while ��2� does. Thus, Eq. (2) has the contribution of
two terms called here the Lagrangian and the nonlinear
pressures.

Let S0 be the surface of the object target at rest. One can
show that the instantaneous force on the object up to
second order in the excess of pressure is given by

f � �
ZZ

S�t�
p�1�ndS�

ZZ
S0

p�2�ndS; (3)

where S�t� is the moving object surface and n is the out-
ward normal unit-vector on the integration surface.
Assuming that the sphere is under influence of a bichro-
matic acoustic beam with fundamental angular frequencies
!1 and !2, the dynamic radiation force is produced by the
contribution of stresses at the difference frequency !21 �
!2 �!1.

Consider the Fourier transform of a function g�t� as
F �g� and its inverse denoted by F�1. The dynamic radia-
tion force is given in terms of the component of Eq. (3) at
!21. Accordingly, the dynamic radiation force is [4] f21 �

F�1�f̂21�, where

f̂ 21 �
ZZ

S0

n 	 Ŝ21dS� i"�0!21F
ZZ

S�t�
��1�ndSj!21

;

(4)

where i is the imaginary unit and

Ŝ 21 � �F �p�2�I� �0v�1�v�1��!21
(5)

is the amplitude of the dynamic radiation stress with I
being the unit tensor. The dyad �0v�1�v�1� is the Reynolds’
stress tensor.

To obtain the dynamic radiation force over an object, we
have to solve the corresponding scattering problem de-
scribed by ��1� and ��2�. These functions satisfy the linear
and the second-order wave equations [22]
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where �2 � r2 � �1=c2
0��@=@t�

2 is the d’Alembertian op-
erator and � � 1� B=A. Hence, the scattering problem
should be solved through Eqs. (6) and (7) with appropriate
boundary conditions.

Now consider a bichromatic plane wave formed by the
excitation in the velocity field v � "c0�sin!1t� sin!2t�ez
at z � 0, where ez is the unit vector in the z direction. For
the perturbation terms of the velocity potential, one has the
boundary conditions @��1�=@z � �c0�sin!1t� sin!2t�
and @��2�=@z � 0 both at z � 0. The solution of Eq. (6) is

��1� � c0 Re
�

1

k1
e�i�!1t�k1z� �

1

k2
e�i�!2t�k2z�

�
; (8)

where Re means the real part of a complex variable, k1 �
!1=c0, and k2 � !2=c0. We are only interested in the
second-order velocity potential at the difference frequency
!21. Hence, from Eq. (7) we have

��2�21 �
�c0

2k21
Ref�k21z� i�e

�i�!21t�k21z�g; (9)

where k21 � !21=c0.
In what follows we calculate the dynamic radiation force

on a rigid sphere of radius a. The amplitude of the force in
Eq. (4) has contributions from the Lagrangian, the acous-
tic, and the nonlinear pressures, and the Reynolds’ stress
tensor. One can show that the contribution of the second
term in the right-hand side of Eq. (4) is proportional to
�!mZm�

�1, m � 1, 2. The quantity Zm is the mechanical
impedance of the oscillating sphere [15] at the frequencies
!1 and !2. In the experimental setup we use frequencies
above 2.2 MHz; hence, the magnitude of �!mZm�

�1 is as
small as 10�6, which is much smaller than other contribu-
tions to the dynamic radiation force. Therefore, we neglect
this contribution here.

Let us focus on the scattering of the nonlinear pressure at
the difference frequency p21 � "2�0@�

�2�
21 =@t. We restrict

our analysis to the case k21z0 
 1 and a� z0. The energy
density at the acoustic source is E0 � "2�0c

2
0=2. From

Eq. (9), the amplitude of the nonlinear pressure in the
spherical coordinates �r; �; ’�, is given in terms of partial
spherical waves as

p̂ 21 � A
X�1
n�0

�2n� 1�in�jn�k21r� � bnhn�k21r��Pn�cos��;

(10)

where A � �iE0�k21z0e
ik21z0 , the functions jn and hn are

the spherical Bessel and first-type Hankel functions of nth
order, respectively. The function Pn is the Legendre poly-
nomial of nth order. The scattering coefficients are given
1-2
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by [23]
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0
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0
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��0=�1�j1�x21� � x21j01�x21�

��0=�1�h1�x21� � x21h
0
1�x21�

;

where x21 � k21a. The prime symbol stands for the deriva-
tive of the function with respect to its argument.

By substituting Eq. (10) into Eq. (4), neglecting the
direct contribution of the acoustic pressure, and using the
result of Ref. [4], one obtains the dynamic radiation force
as

f 21 � �a2E0Ŷ21e�i�!21t�k21z0�ez: (11)

The dynamic radiation force function Ŷ21 is given by
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where
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; n � 1;
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1

xm���0=�1�h1�xm� � xmh
0
1�xm��

;

xm � kma with m � 1, 2. The symbol * is the complex
conjugate. The first term of Eq. (12) is the dynamic radia-
tion force used in the literature [4,13]. The last term in the
right-hand side of Eq. (12) is due to the nonlinearity of the
fluid and is associated with parametric amplification in
dynamic radiation force. This term has not been treated
in previous works. The regime of parametric amplification
can only be neglected when !1 ’ !2. It is important to
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FIG. 1 (color online). Experimental apparatus utilized to mea-
sure the dynamic radiation force on the sphere. The dimensions
of the tank are 100� 64� 38 cm for water and 40� 40�
24 cm for alcohol.
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note this amplification depends on the quantities z0=a, �,
and !21.

To verify Eq. (11), we realized an experiment to measure
dynamic radiation force. The basic experimental setup is
described in detail in Ref. [15]. In Fig. 1 we illustrate the
experimental apparatus. An in-house flat transducer with
diameter d � 22 mm is used to insonify an acrylic sphere
inside a tank either filled with ethyl alcohol or degassed
water. The sphere has radius a � 1:6 mm, density �1 �
1190 Kg=m3 and is suspended in a pendulum along the
beam axis 20 cm away from the transducer. The parameters
for alcohol (water) are �0 � 785�1000� kg=m3, c0 �
1100�1500� m=s, and � � 11�6�. We used a suppressed-
carrier amplitude-modulated signal to drive the transducer.
The carrier frequency is !0=2� � 2:25 MHz and the
modulation frequency !21=2� is swept from 10 Hz to
240 kHz. In such a configuration the wave frequencies
are !1;2 � !0 !21=2. For the specified difference fre-
quency range, we measured the acoustic pressure in water
at 20 cm away from the transducer aligned with the beam
axis. The measurement was performed by a polyvinylidene
fluoride membrane hydrophone (Y-33-7611, GEC-
Marconi, Great Britain). The amplitude of the measured
pressure remained constant within an error of less than 5%
as the difference frequency varied in the specified range.
The dynamic radiation force on the sphere is obtained by
measuring vibration velocity of the sphere. The force is
given by the product of the vibration velocity and the
mechanical impedance of the sphere at !21. The vibration
of the sphere was detected by a laser vibrometer (Polytec
GmbH, Waldbronn, Germany), which was aligned with the
beam axis of the transducer. The signal from the vibrome-
ter was filtered by a lock-in amplifier (Perkin Elmer 7265,
Oak Ridge, TN) at the difference frequency !21.

The frequencies used in the experiment are such that
k1;2a
 1. Thus the distance at which the far field of the
transducer begins for the frequencies !1 and !2 is [24]
z1;2 � k1;2d

2=8�, which corresponds to z1 ’ z2 � 18 cm.
Furthermore, in this region the incident wave resembles a
plane wave with circular cross section whose 3 dB radius is
approximately [24] 0:35d=2 � 3:9 mm. We can reason-
ably assure that the sphere is thoroughly inside this region
and the plane wave approximation can be used for the
incident beam.

The dynamic radiation force as described in Eq. (11) is
only valid within the preshock wave range. When a finite-
amplitude wave propagates in a fluid, its form tends to
steepen up to develop shocks. The formation of shock
waves implies dissipation, which is not described by
Eqs. (6) and (7). For a monochromatic plane wave the
preshock range has length [25] ‘���2�"�1�B=2A���1,
where � is the wavelength. The only unknown parameter
necessary to determine the preshock wave range is the
Mach number. However, we may estimate it by equating
the dynamic radiation force measured at !21=2� � 10 Hz
1-3



TABLE I. Summary of the experimental measurements.

Mach Number Dynamic Radiation Force Gain
10 Hz 240 kHz

alcohol 1:7� 10�5 3:0 �N 34 mN 80 dB
water 1:0� 10�5 2:8 �N 6.7 mN 66 dB
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to Eq. (11). In this frequency range the theory of dynamic
radiation force was already validated experimentally [15].
A summary of the measured data in the radiation force
experiment is shown in Table I. According to the measured
data, the preshock wave range is ‘ � 62 �272� cm for
alcohol (water). Therefore, the sphere at z0 � 20 cm is
inside this range for both alcohol and water experiments.

In Fig. 2, we exhibit a comparison between the measured
dynamic radiation force and Eq. (11). Prior to the vertical
dotted line at 2 kHz, parametric amplification has a minor
role in the dynamic radiation force. This region coincides
with the result obtained in Ref. [4]. Beyond this line we
have a prominent amplification of the dynamic radiation
force. The theory predicts a gain of 52 (44) dB in alcohol
(water) as the difference frequency varies from 10 Hz to
240 kHz. Discrepancies between the theory and experi-
mental results might be related to diffraction, thermovis-
cous effects of the fluid, and elastic properties of the
sphere. Factually, the acrylic sphere is a viscoelastic ma-
terial which allows the formation of internal and surface
waves. These waves are not present in a rigid sphere.
Thermoviscous effects may produce streaming in bound-
ary layers surrounding the sphere and nearby the walls of
the tank. Streaming can cause a blueshift in the waves near
to the surface of the sphere; thus increasing the dynamic
radiation force. A theory with thermoviscous effects re-
quires a full solution of the scattering problem using the
Navier-Stokes equations [26].
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FIG. 2 (color online). Comparison of the theory and experi-
ment to measured dynamic radiation force on the acrylic sphere
suspended in water (�) and ethyl alcohol (�).
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In summary, we have shown that dynamic radiation
force is subjected to parametric amplification. Measured
amplification were 80 dB in alcohol and 66 dB in water as
the difference frequency was tuned from 10 Hz to 240 kHz.
Results are in reasonable agreement with the theory pre-
sented in this Letter. We believe parametric amplification
may set new applications of radiation force in elastography
and trapping particles.
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