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Very accurate quantum mechanical calculations of the pure vibrational spectrum of the HeH� mo-
lecular ion are reported and compared with newly obtained pure vibrational transitions extracted from the
available experimental data. The calculations are performed without assuming the Born-Oppenheimer
approximation regarding separability of the nuclear and electronic motions and include the first order
relativistic mass-velocity and Darwin corrections. For the two lowest transitions, whose experimental
energies are established with the highest precision, the calculated and the experimental results show very
good agreement.
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Modern gas phase measurements of molecular quanti-
ties such as rovibrational and electronic excitation ener-
gies, electron affinities, ionization potentials, bond dissoci-
ation, and atomization energies achieve nowadays the pre-
cision exceeding tenths or even hundredths of a wave
number. This presents a challenge to quantum mechanical
calculations because in order to reach such an accuracy, not
only the electronic component of the wave function has to
be calculated with a very high precision, but also the
component describing the motion of the nuclei (vibrational
and rotational) and the component describing the coupling
of the electronic and the nuclear motions has to be very
accurately represented. Furthermore, even for small sys-
tems the relativistic effects need be taken into account.

In the present work we use the approach departing from
the Born-Oppenheimer (BO) approximation whose devel-
opment has been carried out for last several years in our
research group [see [1–5] and references therein]. The
main part of the development has been the use of correlated
Gaussian functions that depend explicitly on the distances
between the particles (nuclei and electrons) forming the
molecule.

In this work we report the development and implemen-
tation of the algorithm for calculating electronic and nu-
clear mass velocity and Darwin corrections to the non-BO
energy using an all-particle approach. To our knowledge,
this is the first work where these relativistic corrections are
computed for a molecular system with more than one
electron within the non-BO framework. There have been
very accurate calculations of molecular relativistic effects
reported before [see, for example, Refs. [6,7]] , but they
only concerned the electronic corrections and all, except
one on a single electron system [8], have been done within
the BO approximation. The calculations presented in this
work concern all bound states of the HeH� ion with zero
total angular momentum. Such states are usually called
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‘‘vibrational states’’ although, if the Born-Openheimer
approximation is not assumed, the vibrational motion of
the nuclei is coupled with the electronic motion and,
strictly speaking, the vibrational quantum number, v, is
not a good quantum number.

The hydrohelium cation HeH�, whose first laboratory
observation dates back to 1925 [9], is relevant to astro-
chemistry [10] since hydrogen and helium are the two most
abundant elements in the universe. Apart from our recent
work [5], all previous vibrational calculations of HeH� in
the electronic ground 1�� state have been based on the
Born-Oppenheimer potential energy curve and they were
summarized in the work of Bishop and Cheung [11]. Since
HeH� has a relatively large permanent dipole moment,
there have been some highly precise measurements of the
vibration-rotational and pure rotational gas phase spectra
of this system. We will refer to some of those measure-
ments later in this work.

For several decades the most frequently used model
system for testing the accuracy of high level quantum
mechanical molecular calculations has been the hydrogen
molecule. While the HeH� ion has been used less fre-
quently in such tests, it is a useful model for high level
calculations, particularly those that include some account
of the relativistic effects. This is due to the simplicity of the
HeH� electronic structure in the ground electronic state,
which can be described as a helium atom slightly polarized
by the proton. This polarization decreases with vibrational
excitation. Our previous nonrelativistic non-BO calcula-
tions of HeH� [5] yielded the transition energies involving
the first four pure vibrational states that systematically
overestimated the corresponding experimental transition
energies by about 0:07 cm�1. These differences inspired
the present work on the relativistic corrections with the
main goal of reducing the remaining theoretical or experi-
mental discrepancy. The two largest relativistic correc-
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tions, i.e., the ones due to the mass-velocity and Darwin
effects, have been included in the present calculations. The
remaining corrections related to the spin-orbit, orbit-orbit,
and spin-spin interactions are expected to be at least by 1
order of magnitude smaller [due to the He-like electron
distribution in HeH�; this conclusion is based on the
calculations of the relativistic effects in He performed by
Mitdal and Aashamar [12] ] and have not been included.

We should also add that HeH� is a system for which
only a couple hundred rovibrational transitions have been
assigned and no pure vibrational transitions have been
measured. Thus, this important system is still ‘‘a work in
progress’’ both in terms of the experimental and theoretical
investigations. In this Letter we show how well these
investigations are converging in determining the transition
energies between the rotationless vibrational levels.

The total nonrelativistic Hamiltonian for HeH� in the
laboratory Cartesian coordinate system has the following
form:

Ĥ tot � �
X4
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1

2Mi
r2
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j>i

QiQj

Rij
; (1)

where the masses, charges, and positions of the four par-
ticles forming HeH� are denoted as Mi, Qi, and Ri,
respectively. The first two particles are the nuclei of the
He and H atoms, and the last two are the electrons. In the
first step we transform the Hamiltonian (1) by separating
the center-of-mass motion, thereby reducing the 4-particle
problem to a 3-pseudoparticle problem described by the
internal Hamiltonian, Ĥ. In this transformation the labora-
tory Cartesian coordinate system is replaced by a system
whose first three coordinates are the laboratory coordinates
of the center of mass, r0, and the remaining nine coordi-
nates are the Cartesian coordinates in the internal coordi-
nate system whose origin is placed at the helium nucleus
(particle 1 with massM1 called the reference particle). The
other particles are referred to the reference particle using
the Cartesian position vectors ri defined as ri � Ri�1 �

R1. The internal Hamiltonian, Ĥ, is:
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(2)

where ri � jrij and rij � jRj�1 �Ri�1j � jrj � rij. The
separation of the internal Hamiltonian and the Hamiltonian
of the motion of the center of mass is exact. The internal
Hamiltonian (2) describes three pseudoparticles with
charges qi � Qi�1 and reduced masses mi �
M1Mi�1=�M1 �Mi�1� moving in the central potential of
the charge of the reference particle.

In the calculation of the mass-velocity (MV) and the
Darwin (D) corrections we start with respective
Hamiltonians in the laboratory coordinate frame (R) [13]:

Ĥ MV � �
1
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; (3)
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Ĥ D �
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It should be noted that only spin-1=2 particles contribute to
the D correction proportional to 1=c2 (4) and the helium
nucleus (zero spin) should be excluded from the sums in
(4). However, for the sake of generality of the algorithm
this was not explicitly done in the formula, but it was done
by setting the inverse of the mass of the helium nucleus to
zero in the calculation of the D correction which effec-
tively eliminated the D interaction involving this particle.

Upon transformation of the laboratory coordinate sys-
tem to the internal one, the Darwin Hamiltonian (4) can be
expressed only in terms of the internal coordinates:
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while the mass-velocity Hamiltonian can be represented as
a sum of three terms:

Ĥ MV � ĤMV�r0� � ĤMV�r� � ĤMV�r0; r�;

where the term ĤMV�r�, relevant to the present calculations
of the relativistic contribution to the internal energy, has
the form:

Ĥ MV�r� � �
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The calculation of the relativistic correction to the in-
ternal energy of the system is done separately for each state
as the expectation value of the Hamiltonian representing
the mass-velocity and Darwin contributions,

Ĥ 0 � ĤMV�r� � ĤD�r�;

with the non-BO wave function.
In our works concerning non-BO calculations on small

diatomic molecular systems [3–5] we have shown that the
explicitly correlated Gaussians (ECGs) involving functions
with preexponential multipliers consisting of the internu-
clear distance, r1, raised to a non-negative even power, pk:

�k � rpk1 exp��r0�Ak � I3�r�; (7)

where r � fr01; r
0
2; r
0
3g
0, are very effective in describing

nonadiabatic, zero angular momentum states of diatomic
systems with � electrons. The above function is a one-
center correlated Gaussian with exponential coeffi-
cients forming the symmetric, positive definite, matrix
Ak. I3 in Eq. (7) is the 3	 3 identity matrix. In a more
conventional way �k can also be written as �k �

rpk1 exp��
Pn
i�1 �

k
i r

2
i �

Pn
i<j �

k
ijr

2
ij�, where �ki and �kij

are exponential coefficients that can be determined from
the elements of matrix Ak.
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TABLE I. Dunham’s spectral parameters (in cm�1) fitted to
the 4HeH� 0! 1, 1! 2, 2! 3 vibrational bands.

Yij v � 0! 1 v � 1! 2 v � 2! 3

Y10 2910.9572(7) 2604.1482(12) 2295.5340(61)
Y11 �2:718 696�88� �2:74063�34� �2:79342�49�
Y12 	 104 3.580(28) 2.24(18) �1:04�13�
Y13 	 107 �4:37�26� �3:4�38� 3.4(14)
Y14 	 108 �1:29�47� �0:565�52�
Y15 	 1011 �1:05�21�
Y01 34.91777(13) 34.95109(80) 35.0828(15)
Y02 	 10�2 �1:63857�32� �1:6261�37� �1:5353�41�
Y03 	 10�6 5.984(34) 8.05(66) 3.60(47)
Y04 	 10�9 �2:06�15� �5:0�53� 13.0(21)
Y05 	 10�11 �9:1�32� �1:05�21�
Y06 	 10�13 1.74(48)
�̂ 0.606 1.049 0.148
Jmin � Jmax 0–14 0–20 4–18
Lines 22 25 11
�n!m 2910.9572(7) 2604.1482(12) 2295.5340(61)
�n!m

a 2910.9590 2604.1472 2295.5792
data [15–20] [15,17–21] [19,20]

aFrequencies obtained by fitting the MW and IR spectra of four
isotopic variants of HeH� to the radial parameters in the Eq. (9).
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The energy and the wave function for each state of
HeH� were obtained by minimizing the Rayleigh quotient:

E � min
c0H�fpkg; fAkg�c
c0S�fpkg; fAkg�c

(8)

with respect to the expansion coefficients of the wave
function in terms of the basis functions, ck, the basis-
function exponential parameters, fAkg, and the preexpo-
nential powers, fpkg. Here, H and S are the Hamiltonian
and the overlap matrices. The optimization was done sepa-
rately for each state using an algorithm based on analytical
derivatives of the energy, E�fckg; fpkg; fAkg�, with respect to
the Ak parameters. To achieve high accuracy we used 5400
basis functions for each state [this is by 900 more than used
in [5] ]. We believe that with this many functions in the
basis the energies were converged to the 8th–9th decimal
figure. The range of the preexponential powers, fpkg, used
was 0–250, and all the powers were partially optimized for
each state.

After the wave functions for all 12 �v � 0; . . . ; 11�
states were generated, we calculated the expectation values
of Ĥ0 for each state and added them to the variational
energies of the corresponding states. Those values were
used to calculate the transition energies. In the calcula-
tions we used the following values for the nuclear
masses: mHe � 7294:299 536 3me (4He isotope), mp �

1836:152 672 61me taken from CODATA 2002. Here, me
stands for the mass of the electron.

Based on the available experimental data, only the fre-
quencies (�v0!v00) of the lowest three pure vibrational
transitions (J � 0), namely 1! 0, 2! 1, and 3! 2, of
4HeH� can be estimated reliably. We used two indepen-
dent estimation methods. The first one was based on fitting
the microwave (MW) and infrared (IR) spectra of the four
isotope variants of 4HeH� to the radial parameters in the
Herman-Ogilvie equation [14]:

�
�

@
2

2m0

d2

dx2 �UvJ�x� � EvJ

�
 vJ�x� � 0; (9)

UvJ�x� �
B0J�J� 1��1� ��x� � ��x��

�1� x�2

� V�x��1� ��x�� � V�x�0 � EvJ��x� (10)

including the adiabatic, V�x�0, the nonadiabatic rotational,
��x�, and the vibrational, ��x�, corrections to the BO
energy levels, and then calculating �1!0, �2!1, �3!2.
The details of this method can be found in [5]. The results
obtained are presented in Table I.

In the second method the vibrational frequencies were
estimated by fitting the line positions of the separate bands
1! 0, 2! 1, and 3! 2 of 4HeH�, including R�J� and
P�J� rovibrational transitions, to the Dunham’s energy
formula [22,23]:
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EvJ �
X
i;j

Yij
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i
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In this approach the frequencies of the vibrational transi-
tions n! m are directly obtained from the relationship:

�n!m � Y10�v
0 ! v00�: (12)

The calculations were performed by using a weighted
nonlinear least-squares routine with weights taken as the
inverse squares of the uncertainties of the experimental
data. To obtain the best set of the Dunham constants, Yij,
fitted from the spectra, we used as the criteria: the smallest
number of the fitted parameters consistent with the mini-
mum value of the normalized standard deviation, �̂, the
maximum value of the F statistics, and the optimal values
of the estimated standard error, �i, of each fitted parameter
i and of the coefficient, cc�i; j�, correlating parameters i
and j. The results of these calculations are also presented in
Table I. The uncertainty shown in parentheses is the esti-
mated standard deviation in the units of the last quoted
digit of the values of the fitted Dunham constants.

The discrepancy ��3!2 � 0:0452 cm�1 in the values of
the �3!2 vibrational frequency calculated by the two speci-
fied methods is due to a small number of available line
positions (only 11) used in the calculation. Hence, in this
case we can only specify the range for this frequency as
�3!2 2 �2295:5340�61�–2295:5792�. The differences in
the values of the remaining frequencies ��1!0 �
0:0018 cm�1 and ��2!1 � 0:001 cm�1 are less than the
experimental uncertainties of the spectral data used in the
calculations (0:002–0:003 cm�1). The only exception is
the data (7 lines) of Shy [20] obtained with the accuracy
of 0:0006 cm�1.
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TABLE II. Total non-BO energies (Enon-BO), mass-velocity corrections (MV), Darwin corrections, v� 1! v vibrational frequen-
cies calculated without (�Enon-BO) and with (�Enon-BO�rel) inclusion of relativistic corrections, and first three vibrational frequencies
extracted from experimental data using two different methods of extrapolation (�Eaexp and �Ebexp, respectively). The energies and
corrections are given in a.u., the frequencies in cm�1.

v Enon-BO MV Darwin �Enon-BO �Enon-BO�rel �Eaexp �Ebexp

0 �2:971 078 463 6 �7:12801	 10�4 5:85088	 10�4 2911.0189 2911.0007 2910.959 2910.957
1 �2:957 814 885 4 �7:11099	 10�4 5:83303	 10�4 2604.2064 2604.1676 2604.147 2604.148
2 �2:945 949 248 2 �7:10031	 10�4 5:82058	 10�4 2295.6365 2295.5787 2295.579 2295.534
3 �2:935 489 558 6 �7:09481	 10�4 5:81245	 10�4 1982.1338 1982.0562
4 �2:926 458 292 7 �7:09571	 10�4 5:80981	 10�4 1660.4533 1660.3559
5 �2:918 892 711 0 �7:10185	 10�4 5:81152	 10�4 1327.9067 1327.7860
6 �2:912 842 322 8 �7:11474	 10�4 5:81891	 10�4 984.4980 984.3599
7 �2:908 356 619 8 �7:13281	 10�4 5:83069	 10�4 639.3467 639.1959
8 �2:905 443 541 7 �7:15525	 10�4 5:84625	 10�4 327.4922 327.3615
9 �2:903 951 377 4 �7:17684	 10�4 5:86189	 10�4 116.2220 116.1487

10 �2:903 421 831 1 �7:18995	 10�4 5:87166	 10�4 24.4368 24.4099
11 �2:903 310 488 9 �7:19492	 10�4 5:87541	 10�4

Unbound �2:903 304 556 5
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The total and transition energies for all 12 bound vibra-
tional states of HeH�1 with zero total angular momentum
obtained in the non-BO calculations are presented in
Table II. Both nonrelativistic results and results including
the relativistic corrections are shown. All transition ener-
gies corrected for the relativistic effects are lower than
their uncorrected counterparts. The largest shift of
�0:1508 cm�1 due to the relativistic corrections occurs
for the 8! 7 transition. It is clear that for all transitions the
inclusion of relativistic corrections change the frequencies
by much more than their respective experimental errors.
The comparison between the calculated transition frequen-
cies and the experimental results for the first three transi-
tions is also shown in Table II. As mentioned, only for the
first two transitions did the experimental results obtained
using both estimation methods agree to high precision. For
those two transitions the relativistic corrections bring the
predicted frequencies noticeably closer to the experimental
values. Although adding the relativistic correction to the
third transition (3! 2) also improves the result, there is a
discrepancy between the two extrapolated experimental
values, making this case less reliable.

In conclusion, it is clear from the results presented here
that theoretical calculations with an approach that does not
assume the BO approximation and includes some relativ-
istic effects (of the order of �2) are capable of generating
results whose accuracy matches the accuracy of the experi-
mental measurements. It is also clear that, while in the
calculations all 11 pure vibrational transitions are pre-
dicted, only two lowest transitions are reliably established
on the experimental side.

This work has been supported in part by the National
Science Foundation. We would like to thank Professor
Jacek Karwowski for many valuable discussions and sug-
gestions concerning this work. Thanks are also due to
Professor Jow-Tsong Shy for permission to use his unpub-
lished HeH� spectral data.
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