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We compute the O��2
s� QCD corrections to the fully differential cross section pp! WX ! l�X,

retaining all effects from spin correlations. The knowledge of these corrections makes it possible to
calculate with high precision the W boson production rate and acceptance at the CERN Large Hadron
Collider (LHC), subject to realistic cuts on the lepton and missing energy distributions. For certain choices
of cuts we find large corrections when going from next-to-leading order (NLO) to next-to-next-to-leading
order in perturbation theory. These corrections are significantly larger than those obtained by parton-
shower event generators merged with NLO calculations. Our result may be used to assess and sig-
nificantly reduce the QCD uncertainties in the many studies of W boson production planned at the LHC.
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Production of electroweak gauge bosons is a vital com-
ponent of the hadron collider physics program. The large
production rates for this channel at the CERN Large
Hadron Collider (LHC) will facilitate several important
precision measurements. LHC experiments plan to deter-
mine the W boson mass and width with errors of �MW �
15 MeV and ��W � 50 MeV, respectively [1]. The
Weinberg angle sin�W can be extracted from the
forward-backward asymmetry of the lepton pair in pp!
Z! e�e� with a precision of 1� 10�4. The precision
possible in these channels at high luminosities makes these
measurements competitive with LEP results. Searching for
deviations from predictions in dilepton events with large
invariant mass, missing energy, or transverse momentum
probes extensions of the standard model which contain
new gauge bosons.

In addition to its high rate, electroweak gauge boson
production has a simple, distinct experimental signature.
This also makes it a useful process for calibrating and
monitoring machine and detector performance. Z and W
production can be used to determine and monitor the
hadronic and partonic luminosities at the LHC [2]. This
requires a theoretical prediction for the cross section to the
highest possible precision, since this error propagates into
all other measurements through the luminosity uncertainty.
Determination of the LHC luminosity to 1% accuracy is
the ultimate goal of this procedure [2]. This sets the preci-
sion required for theoretical predictions.

When the desired precision on the production cross
section is at the few percent level, many subtle effects
must be included. Both O��� electroweak effects and
O��2

s� QCD effects must be calculated. The electroweak
corrections to pp! W ! l�were computed in [3], where
the importance of final state photon radiation in the W
decay was observed. Next-to-leading order (NLO) compu-
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tations of the QCD corrections to electroweak gauge boson
production were first obtained in the late seventies [4]. The
W boson momentum distribution was investigated via
resummation techniques in [5]. Currently, the next-to-
next-to-leading order (NNLO) QCD corrections are known
for both the inclusive production cross section [6] and for
the gauge boson rapidity distributions [7]. The NNLO
corrections are typically in the few percent range at the
LHC, and must be included in both precision electroweak
studies and the luminosity determination.

Existing calculations of the NNLO QCD corrections to
this process do not include all effects needed for a percent-
level theoretical prediction. Phenomenological applica-
tions of Z and W production require significant cuts on
the phase space of the final state leptons. For example, all
LHC experiments will impose constraints on the transverse
momenta and rapidities of the final state charged leptons.
Cuts on the missing energy will also be employed to
identify the neutrino from the W decay. Calculations that
treat the leptons inclusively are therefore not fully realistic.
They can be used to make estimates, but they are not
sufficient for precision measurements.

The calculation of the full NNLO QCD corrections is
complicated by the spin-one nature of the gauge bosons. If
they were spin-zero bosons, fully differential results could
be obtained from Ref. [7], where the rapidity distributions
for Z and W bosons were computed through NNLO. That
result could be combined with the known double differen-
tial distribution in transverse momentum and rapidity [8] to
fully determine the gauge boson kinematics. The decay of
spin-zero bosons in their rest frame is isotropic, and the
final state distribution of interest could be obtained by
assuming a flat decay distribution in the gauge boson rest
frame. There would be no correlation between the produc-
tion and decay of the boson. However, since the Z and W
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http://dx.doi.org/10.1103/PhysRevLett.96.231803


PRL 96, 231803 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
16 JUNE 2006
are spin-one bosons, the Z! l�l� andW ! l� decays are
not isotropic, and there are ‘‘spin correlations’’ between
the production and decay channels. The importance of spin
correlations for the production of gauge bosons at the LHC
was recently emphasized in [9].

The computation of the differential cross section for
pp! WX ! l�X through NNLO in QCD is a difficult
theoretical challenge. While techniques for performing
differential NLO calculations have been known for many
years [10], the corresponding technology for obtaining
NNLO results is still in its infancy. In a recent series of
papers [11], we have developed a method for performing
these calculations. This technique features an automated
extraction of infrared singularities from the real radiation
matrix elements and a numerical cancellation of these
divergences with the virtual corrections. We describe be-
low the application of this method to the computation of
the W production cross section with all spin correlations
included.

We compute the partonic cross sections ij! l�X as per-
turbative expansions in the strong coupling constant �s.
We specialize here to W� production. At LO, the W�

boson is produced in the collision of an up-type antiquark
and a down-type quark. At NLO, gluon-quark and gluon-
antiquark scatterings also contribute. A variety of partonic
processes contributes at NNLO. These have been enumer-
ated in great detail in [6]. In our discussion below we use
�ud! W�X ! e ��X as an example, since it contains all the
complexities present in the full calculation. All partonic
channels have been included in our result.

There are three distinct contributions contained in the �ud
initiated process: the two-loop virtual corrections, the one-
loop virtual corrections to single gluon emission, and tree-
level double-real radiation processes with two additional
partons in the final state. These must be combined in the
presence of an infrared-safe measurement function to pro-
duce a finite result. We use dimensional regularization to
regulate all ultraviolet, soft, and collinear divergences.

The two-loop virtual corrections to the �ud process are
straightforward to compute. They are very similar to the
O��2

s� corrections to the quark form factor studied in [12];
however, the W production calculation must include the
two-loop corrections to nonsinglet axial current. Care must
be taken to define this correctly in d � 4� 2� dimensions;
we discuss this issue further below. We use the implemen-
tation of the Laporta algorithm [13] described in Ref. [14]
to reduce all required two-loop integrals to a minimal set of
master integrals. The master integrals needed for this com-
putation are well known [12].

We obtain the one-loop correction to the single gluon
emission process �ud! e ��eg using a combination of two
methods. We first use the Laporta algorithm to express all
one-loop Feynman integrals relevant for this process
through master integrals. The master integrals must be
integrated over the final state phase space subject to the
kinematic constraints under consideration. It is not pos-
sible to perform this integration analytically, since we want
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an expression valid for arbitrary cuts. Numerical integra-
tion is also not straightforward because of soft and col-
linear singularities. We employ the method developed in
[11] to extract the singularities in a constraint-independent
way as poles in � before integrating over the phase space
numerically. This technique maps the final state phase
space onto the unit hypercube and uses iterated sector
decomposition [15] to extract all soft and collinear
singularities.

We use essentially the same algorithm to compute the
double-real radiation corrections. A detailed description of
this method, which studies both the one and two parton
emission corrections, can be found in [11].

We now discuss a few new features of this calculation,
first explaining how we treat the axial current in d dimen-
sions. This issue arises from Dirac structures of the form
TrH��

�1��5	TrL��
�2��5	, where ��1;2� denote generic prod-

ucts of Dirac matrices and TrH;L refer to traces over had-
ronic and leptonic degrees of freedom, respectively. These
traces do not vanish when the final state phase space is
sufficiently constrained. A consistent extension of the axial
current to d dimensions is given in [16]. It utilizes an anti-
commuting �5 and contains additional renormalizations
relative to the vector current in order to maintain the
Ward identities. We use this prescription in our calculation.

Even after all three components of the hard-scattering
cross section are combined, collinear counterterms are
needed to remove initial state collinear singularities. In
[11] these collinear counterterms were treated analytically.
Such an approach is not sufficiently flexible to handle cuts
on the W decay products. However, it is straightforward to
extend the numerical approach used for the other NNLO
components in [11] to obtain the desired results.

We have essentially two checks on our calculation. First,
considering different cuts on the electron transverse mo-
mentum and rapidity as well as on the missing energy, we
verify cancellation of the divergences in the W� produc-
tion cross section. Because the divergences start at 1=�4 at
NNLO, the cancellation of all divergences through 1=�
provides a stringent check on the calculation. We also
check that the vector and axial contributions are separately
finite, as required. A second check is obtained by integrat-
ing fully over the final state phase space and comparing
against known results for the inclusive cross section. We
find excellent agreement with the results of [6] for all
partonic channels.

We now discuss the results of our calculation. We first
present the input parameters. We use the parton distribu-
tion functions of [17] at the appropriate order in �s. We use
mW � 80:451 GeV and work in the narrow width approxi-
mation, although this restriction can be easily removed. We
set jVudj � 0:974, jVusj � jVcdj � 0:219, and jVcsj �
0:996, and obtain jVubj and jVcbj from unitarity of the
Cabibbo-Kobayashi-Maskawa quark-mixing matrix. We
neglect contributions from the top quark; these have been
shown to be small in the inclusive cross section [6]. For
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electroweak input parameters, we use sin2�W � 0:2216,
�QED�mZ� � 1=128, and Br�W ! e�� � 0:1068. We set
the factorization and renormalization scales to a common
value, �r � �f � �, and employ various choices of � in
our numerical study.

We find that NNLO corrections depend on the cuts and
can change rapidly from very small to fairly substantial.
We consider cuts of the form

pe? >pe;min
? ; j�ej< 2:5; Emiss

? > 20 GeV; (1)

and use the values pe;min
? � 20, 30, 40, 50 GeV. The

choices pe;min
? � 20 and 40 GeV were considered in the

study of [9]. pe;min
? � 20 GeV is similar to cuts that will be

employed by the ATLAS and CMS collaborations, while
pe;min
? � 40 GeV was chosen in [9] to illustrate the poten-

tial sensitivity of the QCD radiative corrections to experi-
mental cuts. We first present results for the lepton invariant
mass distribution for on-shell W� production in Table I, to
give a feeling for the magnitude of the cross section for
each set of cuts. The numerical precision for all NNLO
numbers is 1% or better. We note that the row labeled
‘‘Inc’’ denotes the fully inclusive cross section.

There are a few things to notice about these numbers.
First, at LO, there is no additional hadronic radiation in the
final state for the lepton and neutrino to recoil against, so
the transverse momentum is restricted to pe? <mW=2. The
cross section is therefore very small for pe;min

? � 40 GeV,
and vanishes for pe;min

? � 50 GeV. This restriction is lifted
at NLO when there is an additional parton for the W to
recoil against. Very near this boundary, the width of the W
can be an important effect. It will induce a (tiny) cross
section for pe;min

? � 50 GeV at LO, and it will shift the
result for pe;min

? � 40 GeV since this value is close to
mW=2. We have not included the W width in our results.
However, we have checked using the results in [9] that
finite width effects change the acceptance by only 7% at
LO, and by less at NLO. We are therefore confident that
our discussion and conclusions are not affected by this
omission.

Another feature to notice is that the corrections are large
for higher choices of pe;min

? and that the dependence on
pe;min
? is strong. For example, for the scale choice� � mW ,

we observe a 22% increase when going from a LO to NLO
inclusive cross section, followed by a decrease of 2.5%
TABLE I. The lepton invariant mass distribution d	=dM2, M �
e� ��W, in pb=GeV2, for various choices of pe;min

? , GeV and � � m

pe;min
? LO

Inc 11.70, 13.74, 15.65
20 5.85, 6.96, 8.01
30 4.305, 5.12,5.89
40 0.628, 0.746, 0.859
50 0, 0, 0
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when NNLO corrections are included. We obtain similar
results for pe;min

? � 20, 30 GeV. However, the pattern of
corrections is much different for pe;min

? � 40, 50 GeV; we
find corrections of 18–27% for pe;min

? � 40 GeV and 33–
37% for 50 GeV when going from NLO to NNLO, depend-
ing on the choice of scale.

The remaining scale dependences can be seen from
Table I. We define the scale dependences of the cross
section 	X as �	X � 2�max�	X���	 �max�	X���	�=
�max�	X���	 �max�	X���	�, where we take the maxi-
mum and minimum values from among the three studied
scale choices. �	X therefore gives the scale variation
uncertainty band for the observable 	X. The scale depen-
dence is reduced to the percent level or less for the in-
clusive case, and for the cuts pe;min

? � 20, 30 GeV.
Moreover, the NNLO results lie within the NLO uncer-
tainty bands. This is not the case for the other two choices
of pe;min

? ; here, the scale dependence actually increases to
the 5%–8% level at NNLO, and the NLO scale depen-
dence completely underestimates the higher-order radia-
tive corrections. This is not completely unexpected, since
for these values additional partons to recoil against only
appear at NLO. The NNLO results therefore serve as the
first radiative corrections for these pe;min

? choices.
However, it indicates the care that must be taken when
using the scale variation as a measure of the theoretical
error.

Another important quantity to study is the experimental
acceptance, defined as the ratio of the cross section after
cuts over the inclusive cross section. We present the ac-
ceptances at NLO and NNLO in Table II. We again note
that for the choices pe;min

? � 40, 50 GeV, the NLO scale
dependences completely underestimate the NNLO correc-
tions. The NNLO shifts in acceptances are very large for
pe;min
? � 40, 50 GeV, reaching 25% for 40 GeV and 40%

for 50 GeV. For the other choices of cuts, the NNLO
acceptances are identical to the NLO ones within numeri-
cal errors, indicating stabilization of the perturbative
expansion.

The cross sections and acceptances for the transverse
momentum cuts pe;min

? � 20, 40 GeV were recently studied
in [9]. The primary tool used in that analysis was the
Monte Carlo event generator MC@NLO, which consistently
combines NLO corrections with the HERWIG parton shower
[18]. In [9], MC@NLO is used to estimate the importance of
mW , for on-shell W production in the reaction pp! W�X !
W=2, mW , 2mW .

NLO NNLO

16.31, 16.82, 17.30 16.31, 16.40, 16.50
7.94, 8.21, 8.46 8.10, 8.07, 8.10
6.18, 6.36, 6.54 6.18, 6.17, 6.22
2.07, 2.10, 2.11 2.62, 2.54, 2.50

0.509, 0.497, 0.480 0.697, 0.651, 0.639
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TABLE II. Acceptances at NLO and NNLO for various
choices of pe;min

? and � � mW=2, mW , 2mW .

pe;min
? (GeV) A�NLO� A�NNLO�

20 0.487, 0.488, 0.489 0.497, 0.492, 0.491
30 0.379, 0.378, 0.378 0.379, 0.376, 0.377
40 0.127, 0.125, 0.122 0.161, 0.155, 0.152
50 0.0312, 0.0295, 0.0277 0.0427, 0.0397, 0.0387
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QCD effects beyond those included in NLO calculations.
Differences between the cross sections and acceptances of
a few percent are found when comparing NLO and
MC@NLO for both pe;min

? choices. The authors of [9] then
conclude that higher-order corrections beyond those in
MC@NLO are unlikely to change significantly the results
they find.

We believe that the few percent differences between
MC@NLO and NLO cannot be used as an estimate of
higher-order corrections. This is because few percent shifts
coming from hard emissions generically occur in process-
dependent radiative corrections that cannot be described by
parton showers. We can support this assertion with the
following observations. It follows from Table II in [9]
that adding the parton shower to the LO cross section fails
to properly predict the NLO cross section. For pe;min

? �

20 GeV, adding the parton shower to the LO result de-
creases the cross section by 8%, while the NLO correction
increases it by 4%. While both HERWIG and NLO correc-
tions increase the LO result for pe;min

? � 40 GeV, the
magnitude of the shifts differ by 45% relative to the LO
cross section. In addition, the NNLO corrections to the
cross sections presented in Table I differ significantly from
the estimate of these corrections in [9]. We conclude that
the results for the cross sections and acceptances obtained
in [9] cannot be used if few percent precision is required.
This is particularly true for cuts where hard gluon emis-
sions are expected to be large, such as for pe;min

? � 40,
50 GeV. We note that since the corrections are large for
pe;min
? � 50 GeV, which is well above the LO kinematic

boundary for the electron transverse momentum at mW=2,
our results are not caused by large logarithms which spoil
the perturbative expansion.

In this Letter we report on the computation of the NNLO
QCD corrections to the fully differential cross section
pp! WX ! l�X at the LHC, with all spin correlations
included. For inclusive enough cuts, this calculation pro-
vides the percent-level theoretical accuracy needed for the
W cross section when realistic experimental cuts are im-
posed on the final state leptons. We find that the QCD
corrections exhibit significant dependence on the lepton
minimum transverse momentum. For high values of this
cut, the corrections may be very different than the inclusive
NNLO results. Our calculation can be easily extended to
include Z production, finite width effects, and p �p colli-
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sions. The last case is particularly interesting because of its
importance for the Tevaton Run II physics program. These
extensions will be discussed in detail in a forthcoming
publication.
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7284 (1997); V. A. Khoze et al., Eur. Phys. J. C 19, 313
(2001); W. T. Giele, et al., hep-ph/0104053.

[3] S. Dittmaier and M. Kramer, Phys. Rev. D 65, 073007
(2002); U. Baur et al., Phys. Rev. D 59, 013002 (1999).

[4] G. Altarelli et al., Nucl. Phys. B 157, 461 (1979);
J. Kubar-Andre et al., Phys. Rev. D 19, 221 (1979);
K. Harada et al., Nucl. Phys. B 155, 169 (1979); Nucl.
Phys. B165, 545(E) (1980); P. Aurenche and J. Lindfors,
Nucl. Phys. B 185, 274 (1981).

[5] C. Balazs and C.-P. Yuan, Phys. Rev. D 56, 5558 (1997);
F. Landry et al., Phys. Rev. D 67, 073016 (2003).

[6] R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl.
Phys. B 359, 343 (1991); 644, 403(E) (2002); R. V.
Harlander and W. B. Kilgore, Phys. Rev. Lett. 88,
201801 (2002).

[7] C. Anastasiou et al., Phys. Rev. D 69, 094008 (2004).
[8] R. K. Ellis et al., Nucl. Phys. B 211, 106 (1983);

R. Gonsalves et al., Phys. Rev. D 40, 2245 (1989); P. B.
Arnold and M. H. Reno, Nucl. Phys. B 319, 37 (1989);
330, 284(E) (1990).

[9] S. Frixione and M. L. Mangano, J. High Energy Phys. 05
(2004) 056.

[10] R. K. Eliis et al., Nucl. Phys. B 178, 421 (1981); W. T.
Giele and E. W. N. Glover, Phys. Rev. D 46, 1980 (1992);
Z. Kunszt and D. E. Soper, Phys. Rev. D 46, 192 (1992);
S. Frixione et al., Nucl. Phys. B 467, 399 (1996); S. Catani
and M. H. Seymour, Nucl. Phys. B 485, 291 (1997); 510,
503(E) (1997).

[11] C. Anastasiou, K. Melnikov, and F. Petriello, Phys. Rev. D
69, 076010 (2004); Phys. Rev. Lett. 93, 032002 (2004);
93, 262002 (2004); Nucl. Phys. B 724, 197 (2005).

[12] R. Gonsalves, Phys. Rev. D 28, 1542 (1983); G. Kramer
et al., Z. Phys. C 34, 497 (1987); 42, 504(E) (1989).

[13] S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000).
[14] C. Anastasiou et al., J. High Energy Phys. 07 (2004) 046.
[15] T. Binoth and G. Heinrich, Nucl. Phys. B 585, 741 (2000);

see also K. Hepp, Commun. Math. Phys. 2, 301 (1966);
A. Denner et al., Nucl. Phys. B 479, 495 (1996).

[16] S. Larin, Phys. Lett. B 303, 113 (1993).
[17] A. D. Martin et al., Phys. Lett. B 531, 216 (2002).
[18] S. Frixione and B. R. Webber, J. High Energy Phys. 06

(2002) 029;S. Frixione et al., J. High Energy Phys. 08
(2003) 007.


