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Natural Electroweak Breaking from a Mirror Symmetry
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We present ‘‘twin Higgs models,’’ simple realizations of the Higgs boson as a pseudo Goldstone boson
that protect the weak scale from radiative corrections up to scales of order 5–10 TeV. In the ultraviolet
these theories have a discrete symmetry which interchanges each standard model particle with a
corresponding particle which transforms under a twin or a mirror standard model gauge group. In
addition, the Higgs sector respects an approximate global symmetry. When this global symmetry is
broken, the discrete symmetry tightly constrains the form of corrections to the pseudo Goldstone Higgs
potential, allowing natural electroweak symmetry breaking. Precision electroweak constraints are satisfied
by construction. These models demonstrate that, contrary to the conventional wisdom, stabilizing the
weak scale does not require new light particles charged under the standard model gauge groups.
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In the standard model (SM) the weak scale is unstable
under quantum corrections. This suggests the existence of
new physics at or close to a TeV that protects the Higgs
mass parameter of the SM against radiative corrections.
While the exact form that such new physics takes is un-
known, there are several interesting alternatives. One pos-
sibility, first proposed in [1,2], is that the Higgs boson is
naturally light because it is the pseudo Goldstone boson of
an approximate global symmetry. This idea has recently
experienced a revival in the form of little Higgs theories
[3,4] (for a clear review and more references, see [5]) that
protect the Higgs mass from radiative corrections up to
scales of order 5–10 TeV.

In this Letter we propose a class of simple alternative
realizations of the Higgs boson as a pseudo Goldstone
boson that also protect the weak scale from radiative cor-
rections up to scales of order 5–10 TeV. In the ultraviolet
these theories have a discrete Z2 symmetry which inter-
changes each SM particle with a corresponding particle
which transforms under a twin or a mirror SM gauge group.
In addition, the Higgs boson sector of the theory respects
an approximate global SU�4� symmetry. Although the
weak and electromagnetic interactions, as well as the top
Yukawa coupling, violate the global symmetry, they all
respect the discrete interchange symmetry. When SU�4� is
broken to SU�3�, the discrete symmetry tightly constrains
the form of corrections to the pseudo Goldstone Higgs po-
tential, allowing natural electroweak symmetry breaking.

Although the smaller Yukawa couplings need not re-
spect the discrete symmetry, naturalness constrains the
masses of the twin partners not to exceed a few hundred
GeV. Precision electroweak constraints are satisfied by
construction, since although these new particles may be
very light, they do not transform under the SM gauge
groups. This is in contrast to little Higgs theories where
these constraints are often a severe problem [6].
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We illustrate the basic idea by way of a simple example
where the global symmetry is realized linearly. Consider a
complex scalar field, H, that transforms as a fundamental
under a global SU�4� symmetry. The potential for this field
is given by

V�H� � �m2HyH � ��HyH�2: (1)

Since the mass squared of H is negative, it will develop a
vacuum expectation value (VEV), hjHji � m=

������
2�
p

� f,
that breaks SU�4� ! SU�3� yielding 7 massless Nambu-
Goldstone bosons. We now break the SU�4� explicitly by
gauging an SU�2�A � SU�2�B subgroup. The field H trans-
forms as �HA;HB�, where HA is a doublet under SU�2�A
and HB is a doublet under SU�2�B. At the end of the day,
we will identify SU�2�A with SU�2�L of the SM. Since
SU�4� is now broken explicitly, the would-be Goldstone
bosons pick up a mass that is proportional to the explicit
breaking. Specifically, gauge loops contribute a quadrati-
cally divergent mass to the components of H as

�V �
9g2

A�2

64�2 H
y
AHA �

9g2
B�2

64�2 H
y
BHB � � � � ; (2)

a loop factor below the cutoff � of the theory. The mecha-
nism in our model hinges on the following simple obser-
vation. Suppose we now impose an additional Z2

symmetry, which we label ‘‘twin parity,’’ which inter-
changes HA and HB and also interchanges the gauge bo-
sons of SU�2�A with those of SU�2�B. This symmetry
forces the two gauge couplings to be equal, gA � gB �
g. The gauge contribution to the mass of H is now

�V �
9g2�2

64�2 �H
y
AHA �H

y
BHB� �

9g2�2

64�2 H
yH; (3)

which is invariant under SU�4� and therefore does not
contribute a mass to the Goldstone bosons. In other
words, imposing twin parity constrains the quadratically
divergent mass terms to have an SU�4� invariant form. The
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Goldstone bosons are therefore completely insensitive to
quadratic divergences from gauge loops.

Gauge loops will, however, contribute a logarithmically
divergent term to the potential that is not SU�4� symmetric
and has the general form ��jHAj

4 � jHBj
4�, where � is of

order g4=16�2 log��=gf�. Provided � is not very much
larger than f this leads to the would-be Goldstone bosons
acquiring a mass of order g2f=4�. This is of the order of
the weak scale for f of order 1 TeV. Notice that we could
have obtained exactly the same result by imposing ‘‘mirror
parity’’—invariance under t! t, ~x!� ~x along with the
interchange of every particle in sector A with its CP
conjugate in B.

At this point we note that the Higgs potential of Eq. (1)
actually possesses a larger global O�8� symmetry of which
U�4� is merely a subgroup, and the 7 Goldstone bosons we
have identified can also be thought of as emerging from the
breaking ofO�8� toO�7�. In particular, thisO�8� symmetry
includes the custodial SU�2� of the Higgs potential in the
standard model.

This approach to stabilizing the weak scale against quan-
tum corrections from gauge loops can be generalized to
include all the other interactions in the SM. To do this, we
gauge two copies of the SM, A and B, with our SM being
SMA. We can then extend the discrete symmetry in either
of the following two ways: (1) Interchange every SMA par-
ticle with the corresponding particle in SMB, or (2) impose
t! t, ~x! � ~x along with the interchange of every SMA
particle with its CP conjugate in SMB. These symmetries,
while similar, are distinct. Each one relates the gauge and
Yukawa interactions in the A sector to those in the B sector.
While the former is a simple generalization of twin parity
which we label ‘‘twin symmetry,’’ the latter extends mirror
parity to the familiar mirror symmetry [7]. Either choice of
the discrete symmetry ensures that any quadratically di-
vergent contribution to the Higgs mass has a form /
�2�jHAj

2�jHBj
2�, which is harmless due to its accidental

SU�4� symmetry. Although quantum corrections to the
quartic are, in general, not SU�4� invariant, once again
these lead to only logarithmically divergent contributions
to the mass of the pseudo Goldstone Higgs field, allowing
for a natural hierarchy between f and the weak scale.

At one loop the largest contribution to the pseudo
Goldstone Higgs potential arises from the top Yukawa
coupling and is logarithmically sensitive to the cutoff.
However, in the twin symmetric case it is straightforward
to make this contribution finite. One possible approach is to
enlarge the approximate global symmetry of the top
Yukawa coupling to SU�6� � SU�4� �U�1� with the
	SU�3�c � SU�2� �U�1�
A;B subgroups being gauged.
We do this by introducing the following chiral fermions:

QL � �6; �4�

� �3; 2; 1; 1� � �1; 1; 3; 2� � �3; 1; 1; 2� � �1; 2; 3; 1�

� qA � qB � ~qA � ~qB;

TR � ��6; 1� � ��3; 1; 1; 1� � �1; 1; �3; 1� � tA � tB; (4)
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which transform as shown under SU�6� � SU�4� and under
	SU�3� � SU�2�
2, where we have suppressed the hyper-
charge quantum numbers. One can then write an SU�4�
invariant Yukawa coupling

yHQLTR � H:c: (5)

The SU�4� symmetric matter content contains exotic left-
handed quarks, ~qA;B, that are charged under color of one
sector and the weak group of the twin, and vice versa. We
introduce additional fermions with opposite charge assign-
ment, ~qcA;B with which the exotic quarks can get a Z2

symmetric mass M�~qcA~qA � ~qcB~qB�. The mass parameter
M is the only source of SU�4� breaking in the top sector,
and it only breaks this symmetry softly. The top contribu-
tion to the Higgs potential in this model will then be finite
at one loop.

We now construct a realistic twin symmetric model that
implements these symmetries nonlinearly. The linear
model we have been working with should be considered
as merely one possibility for a UV completion of the non-
linear one, and others may well exist. The pseudo
Goldstone fields of the nonlinear model are those which
survive after integrating out the radial mode of the field H
in the linear model. We parametrize these degrees of free-
dom as

H � exp
�
i
f
hata

� 0
0
0
f

0
BBB@

1
CCCA �

0
0
0
f

0
BBB@

1
CCCA� i

h1

h2

h3

h0

0
BBB@

1
CCCA� � � � ; (6)

where h1;...;3 are complex and h0 is real. In general, the
effective theory for these fields will contain all of the
operators allowed by the nonlinearly realized SU�4� sym-
metry, suppressed by the cutoff scale �. However, in order
to suppress custodial SU�2� violation we assume that the
symmetry which is nonlinearly realized is in fact O�8�.
This provides additional restrictions on the form of the
interactions in the effective theory below �, allowing
precision electroweak constraints from higher dimensional
operators to be naturally satisfied. Assuming the theory is
strongly coupled at the cutoff, we can estimate �� 4�f.
However, any potential for the pseudo Goldstone fields can
emerge only from those interactions which violate the
global O�8� symmetry, specifically their gauge and
Yukawa couplings. In particular, the electroweak gauge
interactions and the top Yukawa contribute the most to
the pseudo Goldstone potential and must therefore be
studied in detail. We will thus calculate the contributions
to the one-loop Coleman-Weinberg (CW) potential [8]
from these couplings. At one loop the gauge and top
sectors contribute separately, simplifying the calculation.

As before, we gauge two copies of the SM, A and B. The
VEV f breaks SU�2�B �U�1�B down to a single U�1�,
givingWB and ZB masses of order gf. The SU�2�A doublet
hT � �h1; h2� is left uneaten and is identified as the SM
Higgs boson. The couplings of the pseudo Goldstone fields
to the SU�2� �U�1� gauge fields and their mirror partners
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are given by expanding out H � �HA;HB� in terms of the
pseudo Goldstone bosons as given by Eq. (6) in the inter-
action��������

�
@� � igW�;A �

i
2
g0B�;A

�
HA

��������
2
��A! B�: (7)

A simple way of calculating the effective potential is to
calculate the vacuum energy as a function of the field
dependent masses of all of the fields in the theory. In the
absence of quadratic divergences this leads to the formula

VCW � �
1

64�2

X
i

M4
i

�
log

�2

M2
i

�
3

2

�
; (8)

where the sum is over all degrees of freedom, the sign
being negative for bosons and positive for fermions.
Writing the Higgs potential in the form

V�h� � m2
hh
yh� �h�h

yh�2 � � � � ; (9)

we find that the contribution to the Higgs mass term from
the gauge sector is

m2
h �

6g2M2
WB

64�2

�
log

�2

M2
WB

� 1
�

�
3�g2 � g02�M2

ZB

64�2

�
log

�2

M2
ZB

� 1
�
; (10)

where M2
WB
� g2f2=2 and M2

ZB
� �g2 � g02�f2=2.

Equation (10) holds if electromagnetism in the twin sector
is an unbroken gauge symmetry as in the SM. However, it
is also possible that QED in the twin sector is a broken
symmetry and that the twin photon has a mass. This could
arise if, for example, the hypercharge gauge boson in the
twin sector has a mass MB which softly breaks the twin
symmetry. We do not specify a dynamical origin for this
mass since it is technically natural for the dynamics which
generate it to lie at scales above the cutoff �. In the limit
that M2

B 
 g02f2 the second term in Eq. (10) becomes
approximately

3g2M2
WB

64�2

�
log

�2

M2
WB

� 1
�
�

3g02M2
B

64�2

�
log

�2

M2
B

� 1
�
: (11)

The contribution to the Higgs quartic from this sector is
small and can be neglected.

We now turn to the top sector. The couplings of the
pseudo Goldstone fields to the top quark are obtained by
expanding out H as in Eq. (6) in the SU�4� � SU�6�
invariant interaction (yHQLTR � H:c:) of Eq. (5). The h
dependent masses of the fields in the top sector are deter-
mined from this and from the SU�4� breaking mass term,
and can be expressed as

m2
tA �

y2M2

M2 � y2f2 h
yh; m2

TA
� M2 � y2f2;

m2
tB � y2f2; m2

TB
� M2;

(12)

to leading order in jhj2, where we have assumed for
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simplicity that y is real. This leads to the following con-
tributions to the Higgs potential of Eq. (9):

m2
h �

3

8�2

y2M2

M2 � y2f2

�
M2 log

m2
TA

m2
TB

� y2f2 log
m2
TA

m2
tB

�
;

�h � �
m2
h

3f2 �
3

16�2

y4M4

�M2 � y2f2�2
log
m2
TA

m2
tA

�
3

16�2

y4M4�M2 � y2f2�

�M2 � y2f2�3
log
m2
TB

m2
tB

�
3

32�2

�
4y4M4

�M2 � y2f2�2
�

y4M4

�M2 � y2f2�2

�
: (13)

In order to generate a mild hierarchy hhi< f so that in
the strong coupling limit the cutoff �� 4�f is of order
5 TeV, we add to the theory a ‘‘� term’’ that softly breaks
the discrete Z2 twin symmetry. This term takes the form
�2HyAHA and contributes to m2

h and �h. In addition, since
the smaller Yukawa couplings do not contribute signifi-
cantly to the Higgs potential, we do not require them to
respect the discrete symmetry. In this nonlinear model, the
absence of quadratically divergent contributions to the
Higgs mass can be understood as a consequence of can-
cellations between the familiar SM loop corrections and
new loop corrections that arise from the (mostly nonrenor-
malizable) couplings of the Higgs boson to the twin sector.

For phenomenological purposes we divide twin sym-
metric models into two classes—those where the top
sector is extended as in Eq. (5), and those where it is not.
As we now explain, the experimental constraints in these
two cases are different. In the first case the exotic quarks
~qA;B and ~qcA;B, which are charged under both U�1�A and
U�1�B, lead to kinetic mixing between the photon and its
twin partner at one loop [9]. Since the experimental con-
straints on such mixing are very severe, the twin photon
must be heavy. In the second case, however, there are no
particles charged under both sets of gauge groups, and a
preliminary analysis does not reveal any nonzero contri-
bution to the kinetic mixing term up to three-loop order. In
this scenario it may therefore be phenomenologically al-
lowed for the twin photon to be massless, provided a
kinetic mixing term is not present at the cutoff. The mirror
symmetric model shares the same phenomenology as the
twin symmetric model without the extended top sector.

We now study each of these two scenarios in more detail,
starting with theories with the extended top sector. In this
case the strongest bound arises from the requirement that
the twin neutrinos (and the twin photon itself) do not
contribute significantly to the energy density of the uni-
verse at the time of big bang nucleosynthesis [10,11]. This
constraint can be satisfied if the following two conditions
are met: There is large entropy production during the QCD
phase transition, significantly more than during the corre-
sponding transition in the twin sector, and the two sectors
are not in thermal equilibrium at any time after the QCD
phase transition. Since the dynamics of the QCD phase
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transition is expected to be sensitive to the number of light
quarks and their masses, which are not constrained to be
the same in the two sectors, it is certainly plausible that the
first condition is satisfied. What about the second? If the
mixing term is zero at the cutoff and is generated only at
the one-loop level through the exchange of the exotic
quarks, the two sectors will not be in equilibrium below
a few hundred MeV provided the twin photon mass MB is
larger than a few hundred GeV. In such a scenario the twin
electron cannot go out of the bath by annihilating into
photons once the temperature falls below its mass, as in
the SM. Instead the twin electron must be extremely light
so as not to contribute too much to the energy density of the
universe at late times. We expect that twin baryons will
constitute some or all of the dark matter in the universe,
depending on the baryon asymmetry in the mirror sector.

Although this model predicts the existence of new light
twin states, the fact that these particles are not charged
under the SM gauge group implies that it may not be easy
to test. In particular, precision electroweak constraints are
easily satisfied. However, one possibility is to look for
invisible decays of the SM Higgs boson into twin fermions
[12]. The relevant vertex arises from substituting the ex-
pansion Eq. (6) into the Yukawa coupling of HB to twin
fermions. The branching ratio for invisible Higgs decays is
of order jhhi=fj2.

We now estimate the fine-tuning in this class of models
for two sets of parameters. For f�800 GeV, ��4�f�
10 TeV, M � 6:0 TeV, and MB � 1 TeV, we find that in
order to obtain the SM values of MW and MZ we need the
soft Z2 breaking parameter ��240 GeV. The Higgs mass
is then about 120 GeV. Estimating the fine-tuning as
@ logM2

Z=@ log�2 we find that it is of order 13% (1 in 8).
For f�500 GeV, �� 4�f � 6 TeV, M � 5:5 TeV, and
MB � 1 TeV, we find that the soft Z2 breaking parameter
� needs to be around 150 GeV. The Higgs mass is again
around 120 GeV and the fine-tuning 38% (1 in 3). This
shows that these models stabilize the weak scale up to 5–
10 TeV.

Let us now turn to mirror symmetric models (and twin
symmetric models without the extended top sector). We are
specifically interested in the scenario where the mirror
photon is massless, since it appears current experimental
bounds cannot exclude this possibility. This class of mod-
els also predict new light mirror fermions. These may now
have tiny fractional electric charges if the kinetic mixing
term between the photon and its mirror partner is very
small but nonzero. Apart from this, the phenomenological
implications are expected to be similar to the case with the
extended top sector. We now estimate the fine-tuning for
one specific parameter choice. Note that the formulas of
the previous section generalize to the case without the
extended top sector when the limit M ! � is taken, up
to finite terms. For f � 800 GeV, �� 4�f � 10 TeV,
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we find that the Higgs mass is 166 GeV and the fine-tuning
is �11% (1 in 9). For f � 500 GeV, �� 4�f � 6 TeV,
we get a Higgs mass of 153 GeV with a fine-tuning of 31%
(1 in 3). This shows that this class of models also stabilizes
the weak scale up to 5–10 TeV.

In summary, we have constructed a new class of models
where the Higgs boson emerges as a pseudo Goldstone
boson whose mass is protected against radiative correc-
tions up to scales of order 5–10 TeV. These theories
demonstrate that, contrary to the conventional wisdom,
stabilizing the weak scale does not require new light par-
ticles transforming under the SM gauge groups.
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