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Gravitational Correction to Running of Gauge Couplings
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We calculate the contribution of graviton exchange to the running of gauge couplings at lowest
nontrivial order in perturbation theory. Including this contribution in a theory that features coupling
constant unification does not upset this unification, but rather shifts the unification scale. When
extrapolated formally, the gravitational correction renders all gauge couplings asymptotically free.
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FIG. 1. A typical Feynman diagram for a gravitational process
contributing to the renormalization of a gauge coupling at one
loop. Curly lines represent gluons. Double lines represent grav-
itons. The three-gluon vertex � is proportional to g, while the
gluon-graviton vertex � is proportional to E=MP.
The straightforward framework for quantum gravity—
general relativity quantized for small fluctuations around
flat space—is a famously nonrenormalizable quantum
field theory [1–4]. Nevertheless, this framework is appro-
priate for describing interactions at energies and momenta
below the Planck scale MP �

�����������������������
@c=GNewton

p
� 1:4�

1019 GeV=c2 when treated as an effective low-energy the-
ory. Indeed, if one makes subtractions to normalize physi-
cal couplings at an energy scale E0 well belowMP in such a
way as to enforce the Einstein-Hilbert action of general
relativity at the classical level with minimal couplings and
a vanishing (or very small) cosmological term, then quan-
tum corrections to this classical action at scale Ewill occur
with coefficients containing positive powers of �E�
E0�=MP, a small number. That procedure is the implicit
foundation for practical use of classical general relativity
as a model of nature despite the existence of quantum
mechanics. It therefore underlies an enormous range of
successful physical and astrophysical applications. Only
the classical theory really comes into play in those appli-
cations, because the quantum corrections are quantitatively
small. Thus, the conceptual framework of effective field
theory provides a sophisticated rationalization for proceed-
ing naı̈vely in applying the classical theory.

Still, as Donoghue has emphasized [5], calculating cor-
rections to the classical theory is a problem of method-
ological interest. Moreover, quantitative considerations
concerning interactions at ultrahigh energy scales, perhaps
approaching the Planck scale, are important in assessing
the possibility of gauge theory coupling unification [6,7].
Also, the size of gravitational corrections, in comparison to
the leading classical term, give an objective indication for
the characteristic scale for the onset of quantum gravity
phenomenology. With these motivations, we consider here
the one-loop (that is, first nontrivial order in perturbation
theory) gravitational correction to running of gauge theory
couplings.

We will perform this calculation directly in the frame-
work described above. Any would-be fundamental theory
of quantum gravity should reproduce the same result in the
limit of the physical scenario considered here, which is
06=96(23)=231601(4) 23160
bosonic gravity in a four-dimensional Minkowski back-
ground, with general matter and gauge sectors, at energies
below the Plank scale. Related calculations have been done
in string theory [8,9], but this brings in several additional
structures simultaneously, and we have found the results
difficult to compare.

Form of the correction.—The character of the correction
can be determined on very general grounds. The one-loop
Feynman diagrams of interest involve a gluon vertex
dressed by graviton exchange (see Fig. 1). Alternatively,
one could calculate the running coupling of a gluon to a test
‘‘matter’’ field. Gauge invariance (i.e., universality of the
gauge coupling) implies that the same result must be
obtained. This consideration highlights a cancellation be-
tween vertex and wave function renormalization, guaran-
teed by Ward identities, as is familiar in QED.

Since the gauge boson vertex has strength g and grav-
itons couple to energy momentum with a dimensional
coupling / 1=MP, dimensional analysis implies that the
running of couplings in four dimensions will be governed
by a Callan-Symanzik � function of the form
1-1 © 2006 The American Physical Society
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where the first term includes the familiar nongravitational
contribution, and the second term includes the gravitational
contribution. Since gravitons carry no gauge charge, b0 has
the same value it had in the absence of gravitation, as
determined by the matter content and the gauge group.
Detailed calculation is required to determine the numerical
value of the coefficient a0.

Even before knowing the value of a0, much phenome-
nology can be extracted from the form of Eq. (1). The
equation can be integrated to yield

ea0E2=M2
P
�4��2

g�E�2
� ea0E2

0=M
2
P
�4��2

g�E0�
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Z E2
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0
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P
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y
:

(2)

This reduces, of course, to the familiar logarithmic running
of inverse couplings in the limit a0 ! 0 (or MP ! 1).
Corrections to the familiar result will be very small for
E;E0 	 MP.

The value of a0 is manifestly independent of the gauge
interaction involved. So, if we consider several gauge
couplings gi, with different bi0, the condition that they
unify at a common value g�EU� is

�4��2

gi�E0�
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�4��2

gj�E0�
2

bj0 � b
i
0

� e�a0E2
0=M

2
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U

E2
0
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P
dy
y
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for all choices of i and j. In particular, the left-hand side of
Eq. (3) must be independent of the choice of i; j. Since that
combination of initial couplings and renormalization group
coefficients is not affected by the gravitational correction,
the unification constraints remain unchanged. However,
the scale of unification and the value of the common
coupling at unification do change, as we shall now discuss.

Comparing the unification condition with and without
the gravitational correction, and taking E2

0=M
2
P ! 0, we

see that the relationship between the uncorrected unifica-
tion energy E
 and the corrected unification energy EU is

lnE2

 � lnE2

U � a0
E2

U

M2
P

: (4)

If E
 	 MP, the self-consistent correction is

E2
U � E2




�
1� a0

E2



M2
P

�
: (5)

In standard (quasiminimal) unification schemes we find
that E
 is smaller than MP by roughly 3 orders of magni-
tude, so this approximation is appropriate, but the correc-
tion itself is of no practical importance. On the other hand,
it is widely viewed as disturbing to have the separation of
scales E
 	 MP. Theories that address this issue will
23160
inevitably bring in the gravitational correction—which,
if a0 happens to be negative, helps to close the gap.

The value of the coupling at unification is modified
according to

ea0E2
U=M

2
P

1

g�EU�
2 �

1

g
�E
�2
; (6)

where g
 is the running coupling as determined by Eq. (1)
with a0 ! 0. For E
 	 MP,

g�EU�
2 �

�
1� a0

E2



M2
P

�
g
�E
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2: (7)

Method of calculation.—The algebra required to evalu-
ate a0 in any straightforward way is formidable. We docu-
ment algebraic details elsewhere [10]; here we just sketch
our method and conventions.

The dynamics for a non-Abelian gauge field coupled to
gravity in 3� 1 spacetime dimensions is given by the
action

S�g;A� �
Z
d4x

��������
�g
p

�
1

�2 R�
1

4g2 gacgbdF a
abF

a
cd

�
;

(8)

where g � detgab, gab is the spacetime metric, �2 �
16�=M2

P, R is the Ricci scalar, g is the gauge coupling,

F a
ab � �aA

a
b ��bA

a
a � fabcAb

aA
c
b (9)

is the field strength, Aa
a is the gauge field, fabc are the

structure constants of the non-Abelian gauge group G, and
�a is the spacetime covariant derivative operator. Since
F a

ab is antisymmetric under a$ b, the Christoffel con-
nections arising from the derivatives in Eq. (9) cancel
against each other, so the covariant derivatives here can
be replaced with ordinary derivatives.

We apply the background field method because it is
especially well suited to the specific problem at hand in
ways that we will highlight throughout this section. In
accordance with this method, we seek to evaluate the
effective action for classical field configurations by inte-
grating over quantum fluctuations hab and Aa

a:

eiSeff �g;a� �
Z

DhDAeiS�g;A�: (10)

Here, we have expanded gab as a quantum fluctuation hab
about a background gab,

g ab � gab � hab; (11)

and likewise expanded Aa
a as a fluctuation Aa

a about a
background aa

a,

A a
a � aa

a � Aa
a: (12)

In principle, the classical fields gab and aa
a could satisfy the

classical equations of motion, the coupled Einstein-Yang-
Mills equations. For our purposes, however—that is, cal-
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culating the renormalization of gauge couplings to one-
loop order in perturbation theory—it suffices to set gab
equal to the flat Minkowski metric while allowing aa

a to
obey the flat-space Yang-Mills equations of motion. We
expand the action (8) in terms of these backgrounds and
fluctuations up to quadratic order in the quantum fields,
since within the background field method, higher-order
terms in the action will only contribute to higher-loop
processes.

If we couple any matter to this system, we do not expand
the matter fields as fluctuations about a background be-
cause we are only interested in the renormalization of the
gauge coupling. We still keep terms up to only quadratic
order in quantum fields, however. Since we are expanding
about Minkowski spacetime, matter terms in the action will
give exactly the same contribution to the one-loop renor-
malized coupling that they did in the absence of
gravitation.

The action (8) is invariant under diffeomorphisms

��hab � @a�b � @b�a � @a�chcb
� @b�

chca � �
c@chab; (13a)

��A
a
a � Aa

c@a�
c � �c@cA

a
a; (13b)

��aa
a � aa

c@a�c � �c@caa
a; (13c)

and under gauge transformations of the group G

��A
a
a � Da�

a � fabcAb
a�

c; (14a)

��hab � 0: (14b)

(Here, Da � @a � iaa
ata
r when acting on representation r,

and indices are raised and lowered with the background
Minkowski metric.) These gauge symmetries need to fixed
before performing the functional integration (10). We take
the background-covariant gauge-fixing conditions

Ga�A� � DaAaa � 0; (15)

~Ca�h; A� � Ca�h� �
�2

g2 F
aabAa

b � 0; (16)

where

Ca�h� � @bh
ab � 1

2@
ah �h � haa�; (17)

and Fa
ab is the appropriate function of classical fields only.

Equation (16) is similar to an R� gauge [11]. Here it is
engineered to cancel unpleasant graviton-gluon cross
terms that would otherwise appear in the expansion.
Using the Faddeev-Popov method [12] in conjunction
with Feynman–’t Hooft weighting factors, the gauge
choices each add gauge-fixing terms to the action as well
as corresponding ghost fields. The ghost fields will not be
expanded about a background and always appear at qua-
dratic order in the action. So, like matter fields, the ghost
fields contribute to the renormalized gauge couplings ex-
actly as they do in the absence of gravitation. In particular,
23160
this means that the diffeomorphism ghost does not contrib-
ute at all and can be ignored in this background field
calculation.

Not all gluon-graviton cross terms in the action can be
eliminated by the choice of gauge (16) because gluon-
graviton mixing in a vector background is a real physical
effect. In order to evaluate the Gaussian integrals in
Eq. (10) as functional determinants, we formally combine
hab and Aa

a into a ‘‘superfield’’ such that the mixing terms
appear in the off-diagonal entries of the functional matrix
in question. If multiple gauge symmetries are present, each
with its own gauge field and renormalizable coupling, the
superfield must be expanded to include each gluon type, as
well as the graviton. The functional matrix then contains
cross terms that mix different gluon types, but these do not
ultimately contribute to the calculation at one-loop order.
So, to this order, each gauge coupling gets renormalized
independently.

Result.—At this point the Gaussian integrals over the
quantum fields in Eq. (10) are formally defined, but the
resulting functional determinants contain ultraviolet diver-
gences. We subtract them at a reference energy E0. We find
the one-loop effective action at energy scale E is

Seff�g; a� � �
1

4

Z
d4x

�
1

g2 �
�2

g2

3

�4��2
�E2 � E2

0�

�
b0

�4��2
ln
E2

E2
0

�
Fa
abF

aab; (18)

where b0 depends on the gauge and matter content inde-
pendently of whether gravitation is included in the calcu-
lation. Taking E differentially close to E0, we read off the
one-loop � function

��g; E� � �
b0

�4��2
g3 � 3

�2

�4��2
gE2: (19)

Using �2 � 16�=M2
P, the unknown coefficient in Eq. (1) is

now determined to be a0 � �3=� � �0:95.
Comments.—The magnitude ja0j � 1 indicates that

MP �
�������������������������
@c3=GNewton

p
does indeed give a fair estimate of

the energy scale for onset of quantum gravity, with no large
numerical factors, for the problem considered here.

At energy scales a few orders of magnitude below MP

the discussion that led to Eqs. (5) and (7) is valid, so the
negative sign of a0 slightly increases EU and slightly
weakens the value of the unified coupling. This helps to
close the gap between the unification scale and the Plank
scale.

Gravitational corrections will cause gauge couplings to
run even in theories that in themselves are exactly confor-
mal invariant, that is when b0 � 0. Two notable examples
in four dimensions are pure U�1� electromagnetism and
N � 4 Super-Yang-Mills [13–15]. For these theories, the
exponential integral in Eq. (2) has zero coefficient, so we
are left with
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FIG. 2. When gravity is ignored, the three gauge couplings of a
model theory evolve as the inverse logarithm of E at one-loop
order (dashed curves). Initial values at 100 GeV were set so that
the curves exactly intersect at approximately 1016 GeV. When
gravity is included at one loop (solid curves), the couplings
remain unified near 1016 GeV, but evolve rapidly towards
weaker coupling at high E.
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e�a0E2=M2
Pg2�E� � constant: (20)

That is, the coupling runs down from its infrared value as a
Gaussian with a width of orderMP. For the pure U�1� case,
this Gaussian running represents the renormalized cou-
pling strength of photons to nondynamical or heavy
sources, and would be the dominant—but still negli-
gible—source of running in QED far below electron-
positron threshold. For the theoretical ‘‘application’’ of
Eq. (20) to N � 4 Super-Yang-Mills, and in the context
of unification, it would be logical to include the contribu-
tion of gravitino-gluino loops to a0, but we have not
calculated that here.

The negative sign of a0 also signifies that the gravita-
tional correction works in the direction of asymptotic free-
dom: it causes the couplings to decrease at large energy. Of
course, its effect only becomes quantitatively important
23160
when the energy approaches the Planck scale, and soon
after that one loses the right to neglect higher-order gravi-
ton exchanges. Though neglect of additional corrections is
not justified beyond E	 MP, it is entertaining to consider
some consequences of extrapolating Eq. (2) as it stands to
these energies, taking into account a0 < 0. The integral on
the right-hand side converges as E! 1, and so Eq. (20)
arises as an asymptotic relation. Thus, the effective cou-
pling vanishes rapidly beyond the Planck scale, rendering
the gauge sector approximately free at these energies. In
Fig. 2, we illustrate some aspects of the preceding discus-
sion pictorially for an example theory with three gauge
couplings whose low-energy values are chosen such that
the bi0 determined from the matter sector result in a uni-
fication at EU � 1016 GeV. Obviously such a theory
mimics the minimally supersymmetric standard model.
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