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Anomalous Diffusion of Inertial, Weakly Damped Particles
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The anomalous (i.e., non-Gaussian) dynamics of particles subject to a deterministic acceleration and a
series of ‘‘random kicks’’ is studied. Based on an extension of the concept of continuous time random
walks to position-velocity space, a new fractional equation of the Kramers-Fokker-Planck type is derived.
The associated collision operator necessarily involves a fractional substantial derivative, representing
important nonlocal couplings in time and space. For the force-free case, a closed solution is found and
discussed.
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For more than 100 years, the quest to understand the
dynamics of tracer particles in random environments has
both challenged and inspired countless scientists. Many
fundamental questions about the dynamical aspects of
statistical physics have been raised in this context, and
most of them are still unanswered today. Given the fact
that this nonequilibrium phenomenon plays a prominent
role in such diverse areas as condensed matter physics,
biophysics, physical chemistry, astrophysics, plasma phys-
ics, and turbulence research, it is not at all surprising that
its theoretical description has continued to attract a lot of
attention over all these years.

In the more recent past, a strong emphasis in this area of
research has been on the investigation of the origin and the
consequences of anomalous, i.e., non-Gaussian, diffusion
(see, e.g., [1–3]). While most publications on this topic are
based on a random-walk-type description in real space, this
Letter employs a phase (position-velocity) space approach,
rigorously deriving and analyzing a new fractional equa-
tion of the Kramers-Fokker-Planck (KFP) type. For later
reference, we mention here that the usual KFP equation is
given by [4–6]�

@
@t
�u �rx�A�x� �ru

�
f�x;u;t��LFPf�x;u;t�; (1)

where we have introduced the Fokker-Planck collision
operator

L FPf � �ru � �uf� � ��uf: (2)

As Kramers [7] has shown, Eq. (1) determines the time
evolution of the joint position-velocity probability distri-
bution f�x;u; t� of a damped particle with inertia in a force
field under the influence of an additional fluctuating force
with the usual white noise statistics:

_x�t� � u�t�; _u�t� � A�x� � �u�t� � ��t�; (3)

with h�i�t��j�t0�i � 2��ij��t� t0�. In 1965, Montroll
and Weiss [8] introduced a different class of stochastic
processes denoted as continuous time random walks
06=96(23)=230601(4) 23060
(CTRWs).—For a recent, comprehensive review, the
reader is referred to Ref. [3].—Conventional CTRWs are
linked to Eq. (3) in the limit of large damping � and
vanishing acceleration A�x�. Here the dynamics is de-
scribed by the Langevin equation _x�t� � ��t�=�. In prac-
tice, however, many systems in physics, chemistry, and
biology will not satisfy this condition. Thus, we are led
to consider the CTRW analog of Eq. (3).

The dynamical model we propose contains both deter-
ministic and stochastic elements. The motion of an indi-
vidual particle is assumed to be governed by the time
evolution equations

_x�t� � u�t�; _u�t� � A�x�: (4)

However, from time to time, the particle is subject to a
‘‘random kick’’ which changes its velocity abruptly. This
kind of dynamics can be described by means of a CTRW-
like approach in phase space. Let us consider a particle
which at time t0 is located in the volume element dx0 about
x0 and in the time interval �t0; t0 � dt0� changes its velocity
to a new value which lies in the velocity space element du0

about u0. The probability for such a process shall be
denoted by ��x0;u0; t0�dx0du0dt0. After a (random) time
period � � t� t0, this particle will undergo a further tran-
sition to a state with the velocity u at the position x. The
corresponding conditional probability shall be called
��x;u; �; x0;u0�dxdud�. We assume that this quantity
can be written in the form

��x;u;�;x0;u0��W�����x�X��x0;u0��

	
Z
du00F�u;u00���u00 �U��x0;u0��: (5)

Here W���d� describes the probability that a transition
occurs in the time interval ��; �� d��, and F�u; u00�du
gives the probability that the particle’s velocity will end
up in the velocity space element du about u. Moreover,

x � X��x0;u0�; u � U��x0;u0� (6)

is the solution (at time t) of Eq. (4) with initial values (at
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time t0) x0 and u0. Assuming that the distribution function
��x;u; �; x0;u0� is statistically independent from the parti-
cle’s path and using Eq. (5), we can relate the quantities
��x;u; t� and ��x0;u0; t0� via the equation

��x;u;t��f0�x;u���t��
Z t

0
dt0
Z
du0

Z
dx0��x;u;t

� t0;x0;u0���x0;u0;t0�

�
Z t

0
dt0W�t� t0�

	
Z
du0F�u;u0�P t;t0��x;u0;t0�:

(7)

Here f0�x;u� characterizes the initial condition, and the
deterministic evolution is described by the Perron-
Frobenius operator

P t;t0��x;u; t0� � e��t�t
0��u�rx�A�x��ru���x;u; t0�

�
Z
du0

Z
dx0��x�X��x0;u0��

	 ��u� U��x0;u0����x0;u0; t0�: (8)

Note that, alternatively, one can write

P t;t0��x;u; t0� �
��X�1

� �x;u�;U�1
� �x;u�; t0�

jJ��x;u�j
; (9)

where �X�1
� ;U�1

� � denotes the inverse of the mapping (6),
and J� is the corresponding Jacobian. [For a Hamiltonian
dynamical system, J� equals unity.]
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Having established an integral equation which deter-
mines the time evolution of ��x;u; t�, we are now inter-
ested in the joint position-velocity distribution function
f�x;u; t�, which is defined as

f�x;u; t� �
Z t

0
dt0w�t� t0�P t;t0��x;u; t0�: (10)

Here w��� denotes the probability that no random kick
occurs within the time interval �. For this quantity, we
have the obvious relationship

w��� � 1�
Z �

0
dtW�t�: (11)

In order to derive an equation describing the time evolution
of f�x;u; t�, we first write down the Laplace transforms of
Eqs. (7) and (10),

��x;u;���f0�x;u��
Z
du0F�u;u0�

	W���u0 �rx�A�x� �ru0 ���x;u0;�� (12)

and

f�x;u; �� � w��� u � rx �A�x� � ru���x;u; ��: (13)

Since, in Laplace space, Eq. (11) reads

w��� �
1�W���

�
; (14)

Eq. (13) can be rewritten as
��� u � rx �A�x� � rx�f�x;u; �� � �1�W��� u � rx �A�x� � ru����x;u; ��: (15)

Equations (12) and (15) then yield

��� u � rx �A�x� � ru�f�x;u; �� � f0�x;u� �
Z
du0F�u; u0����� u0 � rx �A�x� � ru0 �f�x;u0; ��

�W��� u � rx �A�x� � ru���x;u; ��; (16)

where we have introduced the quantity

���� �
�W���

1�W���
�

1� �w���
w���

: (17)

Expressing f0 in terms of f as f0�x;u� � f�x;u; t � 0� and using the identity

W��� u � rx �A�x� � ru���x;u; �� � ���� u � rx �A�x� � ru�f�x;u; ��; (18)

which follows from Eqs. (15) and (17), the Laplace inversion of Eq. (16) yields�
@
@t
�u �rx�A�x� �ru

�
f�x;u;t��

Z t

0
dt0��t� t0�

Z
du0F�u;u0�P t;t0f�x;u0;t0��

Z t

0
dt0��t� t0�P t;t0f�x;u;t0�: (19)

Thus, the time evolution of f�x;u; t� is given by this master equation. In the language of kinetic theory, Eq. (19) can be
interpreted as follows. The left-hand side describes a system of particles subject to Eq. (4). The right-hand side represents a
collision operator which consists of a source and a sink. The phase space density of particles at �x;u� is increased at time t
by particles starting from X�1

� �x;u� at time t0 with a velocity U�1
� �x;u� and making a transition to the velocity u at time t

and position x. f�x;u; t� is decreased, on the other hand, by particles making a transition from the velocity u to some other
velocity. In this context, it should be pointed out thatZ t

0
dt0��t� t0�

Z
du00F�u00; u�P t;t0f�x;u; t0� �

Z t

0
dt0��t� t0�P t;t0f�x;u; t0�; (20)
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due to the constraintZ
du00F�u00; u� � 1; (21)

and that the Laplace inversion of Eq. (17) yields

dw�t�
dt

� �
Z t

0
dt0��t� t0�w�t0�; (22)

which identifies ��t� as a kernel determining w�t�. Also
note that P t;t0f�x;u; t0� is simply a solution of the colli-
sionless version of Eq. (19). Obviously, the above collision
operator is highly nonlocal in space and time, in stark
contrast to virtually all expressions commonly used in
the kinetic theory of gases or plasmas. This nonlocality
can also be viewed as a retardation effect and is closely
linked to the fact that Eq. (19) is invariant with respect to
Galilean transformations, provided F�u; u0� depends only
on the velocity difference u� u0. [Galilean invariance
implies that, together with f�x;u; t�, every f�x� ct;u�
c; t� with c � const is a solution of Eq. (19).]

For concreteness, we now consider the case where
F�u; u0� can be represented by the Gaussian

F�u; u0� �
�

�

4��

�
3=2

exp
�
�
�u� u0 � �u0=��2

4�=�

�
; (23)

which satisfies Eq. (21). This expression can be derived in
the spirit of the Rayleigh model for Brownian motion [5]
by considering a heavy test particle of mass M embedded
in a thermal bath of light particles of mass m (for details,
see Ref. [9]). For large values of the parameter �—which
is proportional to the mass ratio M=m—one obtainsZ

du0F�u; u0�g�u0� � g�u� � ��1LFPg�u� (24)

to leading order in ��1. Demanding at the same time

lim
�!1

��t�=� � 	�t�; (25)

Eq. (19) then takes the form�
@
@t
�u �rx�A�x� �ru

�
f�x;u;t��LFP

Z t

0
dt0	�t� t0�

	P t;t0f�x;u;t0�; (26)
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for �! 1. This equation, a rigorous result based on a
consideration of CTRWs in phase space, is a nontrivial
extension of the usual KFP equation, Eq. (1). The latter is
recovered for 	�t� � ��t�, corresponding to the waiting
time distribution W�t� � � exp���t�, which satisfiesR
1
0 dtW�t� � 1 and �t 


R
1
0 dttW�t� � 1=�. In this case,

Eq. (25) thus implies that the mean time between collisions
gets smaller as � gets larger, such that ��t � 1. While
generalized KFP equations with memory effects have
been considered before by many authors, the retardation
effect has never been included. The latter is important,
however, in order to ensure Galilean invariance, as pointed
out before. Moreover, retardation enters quite naturally in
the present CTRW framework and its physical origin is
evident, given the mixed nature of the underlying physical
process—a particle being subject to a deterministic accel-
eration and a series of random kicks.

Let us now consider the important case that the memory
kernel 	 in Eq. (26) exhibits a power law tail, i.e.,

	�t� t0� �
1

����
@
@t

1

�t� t0�1��
/ �

1

�t� t0�2��
(27)

in the long-time limit, where the prefactor is given in terms
of the gamma function �. A regularization procedure [10]
then leads to the correspondence

Z t

0
dt0	�t� t0�H�t0� ! D1��

t H�t�; (28)

where the so-called Riemann-Liouville operator D1��
t is

defined via

D1��
t H�t� �

1

����
@
@t

Z t

0

dt0

�t� t0�1��
H�t0� (29)

for 0< � � 1. A careful investigation of the regularization
process actually shows that, in the present case, it is
appropriate to introduce a novel type of fractional deriva-
tive—which might be called a ‘‘fractional substantial de-
rivative’’—via
D 1��
t H�x;u; t� �

1

����

�
@
@t
� u � rx �A�x� � ru

�Z t

0

dt0

�t� t0�1��
e��t�t

0��u�rx�A�x��ru�H�x;u; t0�: (30)
We note that, alternatively, one may define this fractional
substantial derivative by means of its representation in
Laplace space D1��

t $ ��� u � rx �A�x� � ru�1��.
Using this definition, one arrives at�
@
@t
�u �rx�A�x� �ru

�
f�x;u;t��LFPD

1��
t f�x;u;t�;

(31)

a fractional generalization of the standard KFP equation,
Eq. (1). The latter corresponds to the special case � � 1. It
might be worth pointing out that, in Eq. (31), the operators
LFP and D1��

t do not commute and that the replacements
�! ��, �! ��, and �! �� (with units ���� � ���� �
s�� and ���� � m2s�2��) have to be made. For � < 1 and
�! 0, one then has ���� � ���1�� and

W��� �
����

���� � �
� 1�

��

��
: (32)

Defining a characteristic time scale � via the (nonana-
lytic) low-� behavior of the waiting time distribution
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W����1���������� , we find that, in the fractional
case, Eq. (25) implies that ���

��1, i.e., �!0 for ��!
1. In this context, � is not to be confused with �t, however.
The latter quantity is infinite here, due to W�t�/ t�1�� for
t!1.

Equation (31) differs significantly from the fractional
KFP equation proposed by Barkai and Silbey [11] in that it
includes retardation effects through the fractional substan-
tial derivative D1��

t . These nonlocal couplings in time and
space are crucial, as will be shown next. For simplicity, let
us focus on the case A�x� � 0, in which the position-
velocity distribution with the initial condition f�x;u; t �
0� � ��x���u� can be written as a superposition of
Gaussians with varying variances:

f�x;u; t� �
Z
d


Z
d�

Z
d�w�
;�;�; t���2��3 detA��1=2

	 exp
�
�
q11

2
u2 � q12u � �x� ut�

�
q22

2
�x� ut�2

�
: (33)

Here A denotes the matrix with the elements A11 � 
,
A22 � �, and A12 � A21 � �; moreover, qij are the ele-
ments of the inverse matrix Q � A�1. The function
w�
;�; �; t� can be viewed as a time-dependent variance
distribution. It obeys a partial differential equation with
temporal memory which can be solved analytically. For
details, the reader is referred to Ref. [9]. Equation (33) can
be used to calculate the long-time behavior of the second-
order moments of the distribution function f�x;u; t�. Here
it proves useful to distinguish two distinct situations �� �
0 and �� � 0. For �� � 0, we obtain

lim
t!1
hu�t�2i �

2��
��1� ��

t�; (34)

lim
t!1
hx�t�u�t�i �

2��
��2� ��

t1��; (35)

lim
t!1
hx�t�2i �

4��
��3� ��

t2�� (36)

in the one-dimensional case [9]. The extension to multiple
dimensions is straightforward and only modifies the pre-
factors in the above equations. For � > 0, the system
exhibits superballistic diffusion; for � � 1, it reduces to
the so-called Obukhov model [12]. We would like to point
out that, for �� � 0, the second-order moments are not
affected by retardation effects, unlike the higher-order mo-
ments. For �� � 0, on the other hand, one gets [9]

lim
t!1
hu�t�2i �

��
��
; (37)

lim
t!1
hx�t�u�t�i �

1

��2� ��
��
�2
�

t1�� � �1� ��
��
��
t; (38)
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lim
t!1
hx�t�2i �

2

��3� ��
��
�2
�

t2�� � �1� ��
��
��
t2: (39)

These results are in line with those obtained in the frame-
work of a one-dimensional collision model in Ref. [13].
For � < 1, the terms proportional to (1� �) will dominate
for t! 1, leading to ballistic motion like in a Lévy walk
model (see, e.g., Ref. [14])—independent of the values of
�� and ��, as long as both are nonzero. These terms have
their origin in the collision term’s inherent memory.
Consequently, retardation effects are observed to alter the
diffusion properties of the system even qualitatively.

In summary, using a CTRW-like approach, we were able
to rigorously derive a new fractional equation of the
Kramers-Fokker-Planck type for particles subject to a de-
terministic acceleration and a series of random kicks. In
this context, we found that the generalized Fokker-Planck
collision operator necessarily involves a fractional sub-
stantial derivative, representing important nonlocal cou-
plings in time and space. For the force-free case, a closed
solution was given in terms of a superposition of Gaussian
distributions with varying variances. This result was then
used to calculate the long-time behavior of the second-
order moments, revealing the ballistic nature of the asso-
ciated diffusion processes for any 0< �< 1 as long as ��
and �� are both nonzero. This universality could be iden-
tified as a direct consequence of retardation effects which
are expressed mathematically by means of the fractional
substantial derivative. In conclusion, the present work may
be considered as a useful starting point for further inves-
tigations of anomalous diffusion of inertial, weakly
damped particles.
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