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Entanglement of Two Impurities through Electron Scattering
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We study how two magnetic impurities embedded in a solid can be entangled by an injected electron
scattering between them and by subsequent measurement of the electron’s state. We start by investigating
an ideal case where only the electronic spin interacts successively through the same unitary operation with
the spins of the two impurities. We find conditions for the impurity spins to be maximally entangled with a
significant success probability. We then consider a more realistic description which includes both the
forward and backscattering amplitudes. In this scenario, we obtain the entanglement between the
impurities as a function of the interaction strength of the electron-impurity coupling. We find that our
scheme allows us to entangle the impurities maximally with a significant probability.
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FIG. 1. Setup for our scheme to entangle two magnetic impu-
rities of spin 1=2 in a solid through electron scattering. The
electron flies along a one-dimensional chain and interacts mag-
netically its with the impurities to entangle them. In a realistic
scenario the electron may also spatially scatter from the impu-
rities.
Recently there has been an increasing interest in pro-
posals for the generation of entanglement among spins in
mesoscopic solid state structures [1–8]. The most natural
schemes are for entangling adjacent stationary spins
through a direct quantum gate [1,2]. A series of proposals
in which one obtains a reasonable separation between the
entangled spins have been proposed for mobile spins [3–
8]. Proposals also exist for entangling orbital (first pro-
posed in Ref. [5] and further explored in Refs. [6–8]) and
path [9] degrees of freedom of mobile entities. However, in
recent years it has become vital to envisage methods to
entangle stationary spins (and stationary qubits in general)
separated by a distance longer than the range of their direct
interaction. The importance arises from the need to scale
the power of quantum computers by linking distinct quan-
tum registers [10,11] (if stationary qubits belonging to two
distinct quantum registers are entangled, then the two
registers can be effectively thought of as parts of the
same quantum computer). Shuttling of ions or spins over
a distance combined with precisely timed gates between
shuttled and stationary ions or spins have been proposed
for this purpose [10,11]. These operations require a high
degree of control of interaction times. An important and
challenging question which thus arises is whether it is
possible to entangle stationary spins outside the range of
each other’s interactions under situations of lower control.
One such example considered so far involves already
starting with two entangled pairs of electrons [12]. Other
examples are the cases in which a mobile spin spatially
scatters when it interacts with stationary spins or when one
cannot make a mobile spin interact differently with differ-
ent stationary spins (say, as a result of its constant velocity
while passing the stationary spins).

So far, most proposals of verifying entanglement in
mesoscopic structures involve mobile entities in an essen-
tial way [5–9,13–15]. It would thus be of fundamental
interest to create an entanglement in a solid which can be
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verified only by measurements on individual stationary
spins [16].

With the above motivations is mind, in this Letter, we
propose a scheme to entangle two magnetic impurities
(stationary spins 1=2) embedded in a solid state system.
The main idea is to use a ballistic electron as an agent
which scatters off the two impurities in succession and
entangles them. Being a scattering based scheme, it re-
quires no control over the ability to switch interactions on
and off between entities in a solid, as is required by many
existing entangling proposals [3]. Moreover, even in com-
parison to other reduced control proposals, such as those
based on scattering or two particle interference [4], our
current scheme has the simplicity that it involves only one
mobile entity, namely, the ballistic electron, and does away
with the difficulty of having to make two electrons coin-
cide at the same place at the same time.

We comment first on the geometry of the system. Since
entanglement generation depends on a conduction electron
interacting with both impurities, it is most convenient to
make the system’s cross section as small as possible. In this
spirit, and for the sake of simplicity, we consider a one-
dimensional metallic atomic chain (of nonmagnetic
1-1 © 2006 The American Physical Society
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FIG. 2. Plots of the probability of success P (dashed line for
aligned and dotted line for antialigned impurity spins) and
entanglement E (solid line for aligned and line with circles for
antialigned impurity spins) obtained between the impurity spins
subject to success (detection of the electron spin to be down) in
the ideal case of the electron successively interacting with the
two impurities through the same unitary operation as a function
of Jt.
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atoms), with two embedded (substitutional) spin-1=2 mag-
netic impurities. This is shown in Fig. 1.

We know that in an ideal case, where a mediating agent
is allowed to interact with two systems through distinct
unitary operations, it can then perfectly entangle them. The
first of these unitaries perfectly entangles the first system
with the agent, and then the second operation swaps the
state of the agent with that of the second system. The
different unitaries are implemented by different interaction
times or strengths between the agent and each of the
systems. Such a technique obviously requires either a great
control over the motion of the agent, or the nontrivial
engineering of different interaction strengths of the agent
with the systems. Under these circumstances, it becomes
interesting to investigate the reduced control situation
where an agent interacts with both systems through the
same unitary operation. How well can the systems be
entangled under these circumstances? We first consider
this simplified case, just in order to investigate how much
entanglement can be established between two impurities,
even when the electron interacts with them through the
same unitary. We find that depending on whether the initial
impurities are aligned or antialigned, one can obtain a
highly or maximally entangled state with a significant
probability. This case may not be realistic from the solid
state scattering scenario, but it is an interesting precursor to
the case when spatial scattering is involved. Moreover, a
possible solid state scenario for this ideal case would be
one in which an electron is carried by a surface acoustic
wave (proposed recently for quantum computation [17]) of
constant velocity and interacts magnetically with two iden-
tical impurities without any spatial scattering (just by
virtue of passing close to the stationary spins). We then
proceed to the realistic case of the electron being spa-
tially scattered by the interaction with the impurities.
Interestingly, in this case, we find that the electron can
entangle the two impurities nearly perfectly (conditional
on a favorable outcome of a measurement of the electron’s
spin). Moreover, the probability of this favorable outcome
is significant (above 40%).

We begin by considering the ideal scenario where the
electron’s spin interacts in succession with each of the im-
purity spins through the Hamiltonian H � J ~S � ~�, where ~�
refers to the Pauli operators of the electronic spin, ~S refers
to Pauli operators for the impurity spins, and J is the
coupling constant between the spins. We now assume
that the electron interacts with the two impurities in suc-
cession for equal intervals of time, so that with both
impurities the same unitary operation is implemented.
Let the joint unitary operation between the electron and
impurity � (with � � 1, 2) as a function of the interaction
time t be denoted byUe��t�. We will first consider the initial
state j 0i � j"iej#i1j#i2 of the electron and the two impu-
rities where the spin of the electrons are aligned with each
other and antialigned with that of the impurity. The final
state is then given by
23050
j fi � Ue2�t�Ue1�t�j 0i

�
e�2iJt

2
��j"iej#i1j#i2��j#iej"i1j#i2� �j#iej#i1j"i2�;

(1)

where � � �1� ei4Jt�2=2, � � �1� ei8Jt�=2, and � �
1� ei4Jt. Note that if we now measure the spin of the
electron and observe the state j#ie, the impurities will be
left in the entangled state �j"i1j#i2 � �j#i1j"i2. In Fig. 2
we present the probability of this outcome (dashed line), as
well as the resulting amount of entanglement quantified by
the entanglement of formation [18] (solid line) between the
two impurities, both as a function of Jt, the product of the
interaction strength, and the interaction time. We study the
probability and the entanglement as a function of Jt in the
interval �0; �=2� as they are periodic functions, and ob-
serve that in this ideal model, maximal entanglement can
only be generated with zero probability (as � and � are not
exactly equal in magnitude for any value of Jt). This,
however, does not rule out the possibility of obtaining a
high amount of entanglement with a significant probability,
for example, an entanglement of 0.99 with a probability of
0.41 as seen from Fig. 2.

Despite the above, we would really like to generate
maximal entanglement between the impurities. We thus
consider the initial state j 00i � j#iej"i1j#i2 in which the
impurities are antialigned. After the interaction of the
electron with the two impurities via the same unitary, we
obtain a state of the same form as Eq. (1) with coefficients
� � sin4Jtei2Jt, � � cos2Jt, and � � 2sin22Jtei2Jt. Here
� and � can be equal in magnitude for certain values of Jt,
and it is possible to project the impurities to a maximally
1-2
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FIG. 3. Realistic case: Plots of the probability P (dashed line)
of detecting the transmitted electron in the spin-down state, and
the amount of entanglement E (solid line) obtained between the
impurity spins in that case, as a function of the interaction
strength J��
F�, for the realistic scenario of the electron suc-
cessively scattering off the two impurities. Our results were
calculated numerically to 14th order in the coupling constant,
ensuring an accuracy of at least one part in 10�8.
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entangled state corresponding to the outcome j#ie of the
electron’s state. We have computed the probability of
this outcome and the entanglement of formation of the
state of the impurities thus generated and plotted these in
Fig. 2 (probability of success as a dotted line and entangle-
ment produced as a line with circles). We find that with a
probability of 0.76, a maximally entangled state
(entanglement � 1) can be generated.

Although the above protocols are of significantly re-
duced control in comparison to cases where time t1 and
t2 can be made controllably different (such as by control-
ling the velocity of the electron), we have found that
conditional generation of a maximally or near maximally
entangled state of the two impurities is possible. However,
one may ask how robust the protocol is with respect to
small variations in t1 and t2 such that t2 � t1 	 �. We have
found that for both the above initial conditions, even for
� � 0:1t, the overlap of the resulting state with the ex-
pected state (for t1 � t2 � t) is 0.998 at the values of Jt
where maximally or near maximally entangled states are
generated. Note that a quantum optical analogue (with
cavities and flying atoms) of our initial condition j 0i
has been considered before with a slightly different
(Jaynes-Cummings) Hamiltonian, where similar results
(including the robustness to t2 � t1 	 �) have been ob-
tained [19]. One might thus expect that an analogue of
initial condition j 00i might be able to generate a maxi-
mally entangled state in the same quantum optical system.

Let us now move to a more realistic scattering scenario.
Magnetic impurities embedded in a conduction electron
sea are traditionally modeled by an s-d Hamiltonian [20].
In this model the magnetic impurities are localized spins
interacting with the conduction electrons via an exchange
term. The full Hamiltonian of a system with one impurity
reads

H �
X
k;�

"ka
y
k�ak� �

X
kk0
Jkk0 ~S:~skk0 ; (2)

where ~S is the impurity spin operator, ayk� creates an
electron with wave vector k and spin �, and ~skk0 �
ây ~� â , with

â �
ak"
ak#

� �
:

The s-dHamiltonian is actually derived from the more fun-
damental Anderson Hamiltonian through the Schrieffer-
Wolff transformation. As a consequence, the interaction
strength J is related to the strength of the Coulomb inter-
action between electrons and the hybridization of narrow
and conduction bands [20]. In our calculation we will adopt
the usual assumption that J is independent of k, k0.

We want to find out how much entanglement may be
generated by a conduction electron that is injected in the
system and interacts with both magnetic impurities. One
may determine the system’s final state by calculating the
scattering matrix associated with each impurity and com-
bining them together. The result is a sequence of (infinitely
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many) scattering processes, in which the output of a scat-
tering event is the input of the subsequent one. The result of
each individual scattering process is determined by use of
Fermi’s golden rule. The relevant T matrix is calculated to
first order in the interaction.

If we consider that the conduction electron is being
injected under low bias, its energy and wave vector will
be the Fermi energy and Fermi wave vector of the system,
respectively. We thus assume an initial state of the form

j�ini � jkF; "i 
 j##i; (3)

which represents a conduction electron with positive Fermi
wave vector kF and spin " propagating towards the two
impurities, whose spins are both # .

As a result of the multiple scatterings of the conduction
electron by the two impurities, a final state is generated
which is a superposition of states in which the conduction
electron has been reflected (r) or transmitted (t), j�outi �
j�r

outi � j�
t
outi, and the transmitted component reads

j�t
outi � AjkF; "i 
 j##i � BjkF; #i 
 j"#i � CjkF; #i 
 j#"i:

(4)

The coefficients A, B, and C may be expressed as an
infinite sum of powers of the product J��"F�. For example,
the coefficients up to sixth order in J��"F� (corresponding
to three iterations of the scattering matrix) are A�3� � 1

N�

�t2� t2	2�8t	3�16	6�7t2	4�, B�3� � 1
N ��2	t�2t	3�

2t2	2�6t	5�8t2	4�, and C�3� � 1
N ��2	t� 8	4 �

2t	3 � 2t2	2 � 6t	5�, where 	 � �iJ��"F�=2, t �

1� 	, and 1
N �

���������������������������������������������������
jA�3�j2 � jB�3�j2 � jC�3�j2

p
. We numeri-
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cally computed the series for J��"F� 2 �0; 2� [according to
our estimates [4], J��"F� is of the order of unit] and
verified that the series converges rapidly in this domain.
So essentially, the values of A, B, and C used in our
calculations are correct for infinite iterations of the scat-
tering matrix.

We now proceed to calculate the amount of entangle-
ment generated conditional on an electron being trans-
mitted, which is the entanglement contained in the state
j�t

outi. Notice that if the transmitted electron has spin-up,
the final state has zero entanglement. Thus we will evaluate
only the entanglement of the state in which the transmitted
electron has spin-down. Figure 3 shows the entanglement
in this state (solid line) and the probability P of observing a
transmitted electron with spin-down (dashed line). One
may notice that there is some entanglement for most of
the range 0< J��"F�< 2, and the probability P is also
considerable. Moreover, there are values of J��"F� for
which the entanglement is maximum, and P is significant
(0.41). Note that for this value of J��"F�, even if we did not
measure the spin of the transmitted electron, the state of the
two impurities are in an entangled state. This entanglement
can be verified by determining the expectation value of the
witness operator 0:25�I 
 I � 0:8212��z 
 I � I 
 �z� �
0:5706��x 
 �x � �y 
 �y�� by local measurements [21]
on the stationary impurity spins alone and finding to be
negative.

In this Letter, we have presented a scheme for entangling
two magnetic impurities (even maximally) in a solid
through the scattering of a single ballistic electron and
the subsequent detection of its spin. While much work
has been done on entangling spins in mesoscopic solid
state systems, this is the first proposal for entangling sta-
tionary spins which are well separated (i.e., outside the
range of each other’s direct interaction) using a reduced
control method. Even if we did not measure the electron’s
spin and only did local measurements (of a witness opera-
tor) on the stationary impurity spins alone, then their
entanglement could be verified, as opposed to the existing
proposals for verifying entanglement between spins in
mesoscopic structures [5–9,13–15]. A more significant
consequence will be in interfacing different quantum regis-
ters for scaling quantum computers. The distance involved
should be same as any other scheme involving ballistic
mobile electrons [3,4]. The scheme should be implement-
able using the same systems as those used to study Kondo
physics [22], and that the values of J��"F� needed for our
scheme are achievable in these systems have been shown in
Ref. [4].
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