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Dynamical Vanishing of the Order Parameter in a Fermionic Condensate
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We analyze the dynamics of a condensate of ultracold atomic fermions following an abrupt change of
the pairing strength. At long times, the system goes to a nonstationary steady state, which we determine
exactly. The superfluid order parameter asymptotes to a constant value. We show that the order parameter
vanishes when the pairing strength is decreased below a certain critical value. In this case, the steady state
of the system combines properties of normal and superfluid states—the gap and the condensate fraction
vanish, while the superfluid density is nonzero.
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FIG. 1 (color online). Time evolution of the BCS order pa-
rameter ��t� following an abrupt change of the coupling con-
stant. The coupling is changed by varying the magnetic field on
the BCS side of the Feshbach resonance (inset). The order
parameter exponentially decays to zero (solid line) at times t	
1=�i and the system goes into a gapless steady state. If the
system is continuously cooled, the order parameter recovers to
its equilibrium value �f (dashed) at times longer than the
quasiparticle relaxation time ��.
Recently, several remarkable experiments have demon-
strated Cooper pairing in cold atomic Fermi gases [1–4].
Key signatures of a paired state—condensation of Cooper
pairs [1,2] and the pairing gap [4] have been observed. In
addition, trapped gases provide a unique tool to explore
aspects of fermion pairing normally inaccessible in
superconductors. One of the most exciting prospects is a
study of far from equilibrium coherent dynamics of
fermionic condensates [5–9], made possible due to the
precise experimental control over interactions between
atoms [10,11]. The dynamics can be initiated by quickly
changing the pairing strength with external magnetic
field.

In the present Letter, we determine the time evolution of
a fermionic condensate in response to a sudden change of
interaction strength. Initially, the gas is in equilibrium at
zero temperature on the BCS side of the Feshbach reso-
nance with a coupling constant gi > 0. At t � 0 the cou-
pling is suddenly changed to a smaller value gf > 0 on the
same side of the resonance, gi ! gf, Fig. 1 (inset). Ground
states of the system at the old, gi, and new, gf, values of the
coupling are characterized by corresponding BCS gaps, �i
and �f, respectively. We consider the case �i � �f. It has
been shown previously that following the change of cou-
pling, the time-dependent order parameter ��t� asymptotes
to a constant value [9], j��t�j ! �1 on a time scale �� �
1=�i. Here we evaluate �1 in terms of �i and �f.

We show that when the coupling is decreased below a
certain critical value, �1 vanishes, Fig. 1. On a �� time
scale the system goes to a steady nonstationary state that
combines properties of normal and superfluid states in a
peculiar way. For example, the gap vanishes, while the
superfluid density remains finite. Provided the system is
continuously cooled, the BCS ground state with a gap �f is
reached on the energy relaxation time scale ��, which is
typically much larger than ��. Experimental signatures of
the novel state include the absence of the gap in rf absorb-
tion spectrum, and zero condensate fraction after a fast
projection onto the Bose-Einstein condensation (BEC) side
(see below).
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At times t� ��, dynamics of the condensate in the
weak coupling regime can be described by the BCS model.
Here we are interested in the thermodynamic limit, in
which case one can use the BCS mean-field approach
[12]. Using Anderson’s pseudospin representation [12],
one can describe the mean-field evolution by a classical
spin Hamiltonian [5,6,12]

H �
X
j

2�js
z
j � g

X
j;k

s�j s
�
k ; (1)

where �j are single-particle energies relative to the Fermi
level and s�j � sxj � is

y
j . The summation in Eq. (1) is over

j�jj<EF, where EF is the Fermi energy. Dynamical var-
iables sj are vectors of fixed length, jsjj � 1=2. The BCS
order parameter is ��t� � �x � i�y � g

P
js
�
j . Equations

of motion for classical spins sj are
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FIG. 2 (color online). After a sudden change of the BCS
coupling constant, the order parameter ��t� (inset) saturates to
a constant value �1. The plot shows the steady state gap �1 in
units of �i as a function of the ratio �f=�i. The exact result
given by Eq. (8) is compared to numerical solution of Eq. (2).
Note that �1 � 0 for �f � 0:2�i.
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_s j � bj 
 sj; bj � ��2�x;�2�y; 2�j�: (2)

Components of spins are related to Bogoliubov amplitudes
uj and vj

2szj � jvjj
2 � jujj

2; s�j � �ujvj; (3)

At t � 0 the system is in the ground state with gap �i.
The ground state is obtained by aligning each spin sj
antiparallel to its ‘‘magnetic’’ field bj [12] in order to
minimize the total energy (1) for coupling constant g � gi

sxj�0� �
�i

2
�����������������
�2
j ��2

i

q ; szj�0� � �
�j

2
�����������������
�2
j � �2

i

q ; (4)

and syj�t � 0� � 0.
At t � 0 the coupling is changed, gi ! gf, and the

initial spin configuration (4) is no longer an equilibrium
for t > 0. To determine the time evolution of the system,
one has to solve equations of motion (2) with initial con-
ditions (4).

We start with a linear analysis. Solving Eq. (2) (with g �
gf) linearized around the spin configuration (4), we obtain
up to terms of order ��=�f

��t� � �f � 8��
Z 1

0
d�

cos!���t

!�����2 � h2����
; (5)

where �� � �f ��i, !��� � 2
������������������
�2 � �2

f

q
, and h��� �

sinh�1��=�f�. In Eq. (5), besides the continuum limit,
we took the weak coupling limit EF=�i ! 1.

The long time behavior of the order parameter in the
linear approximation is obtained from Eq. (5) by the sta-
tionary phase method (see also Ref. [13]),

��t� � �f �
2��

�3=2
��������
�ft

q cos
�
2�ft�

�
4

�
; (6)

At times t
 �� the gap approaches a constant value
�1 � �f to order ��=�f.

Even though the gap is constant, the state of the system
is nonstationary [8]. According to Eq. (2), at large times
each spin sj � s��j� precesses in its own constant field
bj � ��2�1; 0; 2�j�. For example, for the x component of
spins we derive from the linearized equations of motion,

sx��� �
�f

2
������������������
�2 ��2

f

q �
���

��2 ��2
f�

�����������������������
�2 � h2���

p

 cos�!���t������; (7)

However, the gap ��t� � g
P
js
x
j�t� contains oscillations

with many different frequencies. At large times they go
out of phase and cancel out in the continuum limit.

In the nonlinear case it can be shown that the gap decays
to a constant �1 by a similar mechanism [9]. To determine
�1, we use the exact solution for the dynamics of the BCS
model [6]. Consider the following vector function of an
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auxiliary parameter u: L�u� � �ẑ=g�
P
jsj=�u� �j�,

where ẑ is a unit vector along the z axis. Using Eq. (2),
we obtain dL2�u�=dt � 0, i.e., L2�u� is conserved for
any u.

To determine the steady state gap �1, we evaluate L2�u�
at t � 0 for the initial spin configuration (4) and at t
 ��,
when each spin s��� precesses in a constant field. Matching
the two expressions, we derive for �f � �i

�f � �i exp��� tan�=2�; �1 � �i cos�; (8)

where 0 � � � �=2. This equation determines �1 in
terms of �i and �f, see Fig. 2.

We make several observations. The steady state gap
reaches its maximum �1 � �f at �f=�i � 1. Other-
wise, �1 < �f. Expanding around the maximum, we
find �1 � �f � ����2=6�f up to terms of higher order
in ��=�f. The linear term vanishes in agreement with
Eq. (6).

Most interestingly, we see from Eq. (8) that the order
parameter vanishes in the steady state, �1 � 0, when � �
�=2, i.e., for ��f=�i�c � e��=2 � 0:21. If �f=�i is below
this critical ratio, Eq. (8) has no solutions—the system
goes into a gapless steady state, �1 � 0, for �f � 0:21�i.
We also note from Eq. (8) and Fig. 2 that �1 has a cusp at
�f=�i � e��=2; i.e., the transition to the gapless state is
second order.

To gain further insight into properties of the gapless
state, we need to know the spin configuration in this state.
At large times, spin s��� rotates in a constant field b��� �
�2�1x̂� 2�ẑ, where x̂ and ẑ are unit vectors along the x
and z axes, respectively. In the gapless case, b��� � 2�ẑ.
The spin configuration can be characterized by the angle
���� between s��� and �b���. This angle can be deter-
mined by matching the conserved quantity L2�u� at t � 0
and t
 ��,
4-2
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FIG. 3 (color online). Plot of the average occupation number
hn���i as a function of energy in the gapless state for various
values of �f=�i < e��=2. The exact result given by (9) is
compared to the numerical solution of Eq. (2). Note that the
distribution function around the Fermi level is smeared over a
width �� / �i. The inset shows a spin s���� at energy 0<
�� � �i just above and below the critical point.
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sin 2���� �
G���

2�2 �

���������������������������������������������
G2���

4�4 �
4�2�2

i

�2��2 ��2
i �

s
; (9)

where � � ln��i=�f� and

G��� � �2 � 4�sinh�1��=�i��
2

�
8�������������������
�2 � �2

i

q sinh�1��=�i� � 4�2: (10)

Note from Eq. (2) that in the steady state the component
of spin s��� along the field, sk��� � � cos����=2, is con-
stant, while the one perpendicular to the field, js?j �
sin����=2 rotates with a frequency !��� � 2

�������������������
�2 ��2

1

p
.

The approach to the steady state can be studied by linear-
izing Eq. (2) around this state. In particular, we obtain the
asymptotic behavior of ��t�

��t�
�1

� 1�a
cos�2�1t��=4����������

�1t
p ;

�f

�i
> e��=2; (11)

��t�
�i
� A�t�e�2	�it�B�t�e�2�it;

�f

�i
< e��=2: (12)

Here 	 � � cosp and �=2 � p � � is the solution of
p � ln��i=�f� cot�p=2�. The parameter 	 has a property
	! 0 when �f=�i ! e��=2 and 	! 1 when �f=�i !

0. The coefficient a in Eq. (11) is time independent, A�t�
and B�t� in Eq. (12) are decaying power laws, A�t�; B�t� /
1=t
 with 1=2 � 
 � 2.

We conclude that the decay law of ��t� changes from
power law to exponential as we cross the critical point.
Above the critical point spins rotate with frequencies

!��� � 2
�������������������
�2 ��2

1

p
. The inverse square root decay and

oscillations with frequency 2�1 in Eq. (11) are due to

the square root singularity in the spectral density d�=d! /

!=
����������������������
!2 � 4�2

1

p
, cf. Eqs. (5) and (6). Below the critical

point �1 vanishes, !��� � 2�, and the square root anom-
aly disappears.

What happens to the spin configuration as �f=�i is
varied across the critical point? Consider a spin at energy
�� � �i just above the Fermi energy. Using Eq. (9), we
obtain sin����� � sin��0� � 2 ln��i=�f�=� for �f >
e��=2�i and sin��0� � 1 otherwise. The field b���� �
�2�1x̂� 2��ẑ is along the x axis above the critical point
(�1 
 ��) and along the z axis below (�1 � 0). At �i �

�f we have sin��0� � 0, i.e., the spin is parallel to the x
axis. As �f=�i decreases, the x component of the spin also
decreases until it vanishes at the critical point �f �

e��=2�i. Just above it the spin lies in the yz plane and
rotates around the x axis. Below the critical point it rotates
in the xy plane around the z axis (Fig. 3).

In the gapless steady state each spin rotates around the z
axis. Its z component is time independent, sz��� �
� cos����=2. It is related to the average occupation num-
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ber per fermion species hn̂���i at energy � as hn̂���i �
sz��� � 1=2 [12], i.e., hn̂���i � �1� cos�����=2. The dis-
tribution function hn̂���i is smeared near the Fermi energy
over a width �� / �i (Fig. 3). Note that in this respect the
gapless state is similar to the BCS ground state—the
smearing over a width �� / �i due to interactions is also
present in the ground state distribution (4). In the normal
state sz��� � �sgn�=2 and hn̂���i � �����.

Given relation (3), one can reconstruct the time-
dependent condensate wave function and evaluate normal
and anomalous correlation functions, e.g.,

hĉ���t�ĉ
y
���t0�i � ei��t

0�t�cos2 ����
2
; (13)

hĉy�"�t�ĉ
y
�#�t
0�i � ei��t

0�t� cos
����

2
sin
����

2
; (14)

where ĉ�� (ĉy��) annihilates (creates) a fermion of one of
the two species � �"; # on energy level �. Note that even
though �1 vanishes, anomalous averages do not.

Next, we determine the superfluid density ns in the
gapless state. Here we outline the answer, details will be
reported elsewhere [14]. Consider a degenerate Fermi gas
in an axially symmetric trap slowly rotating around the
symmetry axis. The density ns of the superfluid component
can be defined as the rigidity of the superfluid with respect
to an infinitesimal twist in the boundary conditions [15],
 ̂��r�!e�i	� ̂��r�, where � is the azimuthal angle with
respect to the symmetry axis,  ̂��r� �

P
jĉj�’j�r�, and

’j�r� are the single-particle wave functions. The twist gen-
erates a term �	Ĵ in the Hamiltonian, where Ĵ is the cur-
rent operator. The resulting supercurrent Js � ns	=m can
be expressed in terms of correlation functions (13) and (14)
using the standard linear response theory. We find ns �
n=2, where n is the particle density in the normal state. A
similar calculation for nonzero �1 yields ns � n—the
4-3
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superfluid density in the gapped steady state is the same as
in the BCS ground state. Since ns is the second derivative
of the free energy with respect to	, the jump from n to n=2
at the critical point agrees with the second order character
of the transition. The reduction in ns in the state with zero
�1 is consistent with vanishing of the gap in this state [16].

We see that the superfluid density is finite in the gapless
steady state. This reflects the existence of pair correlations
(14) between fermions, a property that in equilibrium has
been directly linked to nonzero ns [17]. This situation is
similar to the phenomenon of gapless superconductivity in
metals [18], where the superconducting state is also char-
acterized by nonvanishing anomalous Green’s functions
and zero spectral gap. A gapless state in superconductors
is usually a consequence of strong perturbations—as the
perturbation is increased, the superconducting metal first
goes into a gapless state with finite ns before it becomes
normal.

A crude qualitative understanding of the dynamical
transition to the gapless steady state can be derived from
the following thermodynamic argument. After the change
of coupling the initial state (4) has energy E��f;�i�> 0
relative to the ground state with gap �f. In thermal equi-
librium the system would have the same energy at a certain
temperature T0��f;�i�. Let us keep �i fixed and vary �f.
At �f � �i, T0 � 0, while the critical temperature Tc �
0:57�f > 0. As �f increases both T0 and Tc grow, but Tc
grows faster and T0 never catches up with it. On the other
hand, when �f decreases, Tc also decreases, while T0

grows. Evaluating T0��f;�i�, to the first order in the
coupling constant we find that T0 � Tc for �f=�i �

0:52� 0:17� and T0 < Tc otherwise. Here � � g=d is
the dimensionless BCS coupling constant and d � h�j�1 �

�ji is the mean level spacing. We see that decreasing the
coupling beyond a certain value provides enough energy
for the transition to the normal state to occur in thermal
equilibrium.

Let us discuss experimental manifestations of the dy-
namical transition to the gapless steady state. After the
initial sweep (gi ! gf) on the BCS side of the resonance
such that �f=�i < e��=2, the gapless state is reached on a
time scale �� � 1=�i. The pairing gap measured in
Ref. [4] is the energy cost �E of breaking a Cooper pair.
This corresponds [12] to removing the spin closest to the
Fermi level in (1). The minimum energy cost is �E �
minjb��� � s���j � �1 cos��0�. Using Eq. (9), we obtain

�E � �1
�������������������������������������������
1� 4ln2��i=�f�=�

2
q

. In the steady state,

�E � 0, i.e., no gap in the rf absorbtion spectrum will
be observed. Molecular condensate fraction [1,2] vanishes
in the gapless state, since Nk�0=N / �2

1 [19].
In conclusion, we determined the dynamics of the paired

state of cold atomic fermions following an abrupt lowering
of the pairing strength, gi ! gf. On a short 1=�i time
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scale, where �i is the equilibrium gap for the initial
coupling gi, the system goes to a nonstationary steady state
with a constant gap �1 and a distribution function given by
Eqs. (8) and (9). When the coupling is reduced so that
�f=�i is smaller than the critical value of e��=2, the steady
state gap vanishes. The decay law of the time-dependent
order parameter ��t� changes from power law to exponen-
tial as �f=�i goes through the critical point Eqs. (11) and
(12). The gapless state combines features of normal and
superfluid states. In particular, the gap and the condensate
fraction vanish, while the superfluid density is nonzero.
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