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Synchronization in the BCS Pairing Dynamics as a Critical Phenomenon
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Fermi gas with time-dependent pairing interaction hosts several different dynamical states. Coupling
between the collective BCS pairing mode and individual Cooper pair states can make the latter either
synchronize or dephase. We describe transition from phase-locked undamped oscillations to Landau-
damped dephased oscillations in the collisionless, dissipationless regime as a function of coupling
strength. In the dephased regime, we find a second transition at which the long-time asymptotic pairing
amplitude vanishes. Using a combination of numerical and analytical methods we establish a continuous
(type II) character of both transitions.
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FIG. 1 (color online). Three regimes of the pairing dynamics
vs the initial gap value �s: numerical (open circles) and
analytical (line). In synchronized phase (A), �s <�AB, the
pairing amplitude oscillates between �� and ��. In the de-
phased regime (B;C), the pairing amplitude saturates to a
constant value, �a, when �AB � �s <�BC, and decreases to
zero at �s � �BC. Dashed line: The stationary gap value ��T	�
reached in a closed system after equilibration.
Recent discovery of BCS pairing in fermionic vapors
[1], made possible by control of interactions in trapped
cold gases [2], has renewed interest in quantum collective
phenomena [3]. Advanced detection techniques and long
coherence times in vapors enable time-resolved studies of
new collective modes, such as spin waves [4] and the BCS
pairing mode [5].

Interaction between a collective mode and constituting
particles is key for our understanding of dynamics in
various systems, from plasma to quantum gases. One of
the most surprising of these phenomena is Landau damp-
ing, which occurs in a collisionless regime via direct dis-
sipationless energy transfer from the collective mode to
single particles. Its nondissipative and thus reversible char-
acter [6] leads to a variety of regimes, notably to quenching
of the damping, first explored in plasma physics [7].
Remarkably, a linearly damped mode can regrow and
transform to a stationary oscillatory Bernstein-Greene-
Kruskal mode. This fascinating prediction was confirmed
experimentally only recently [8].

Naturally, the richness of these nonlinear phenomena
makes it tempting to look for their analogs in cold gases.
Collisionless damping in cold gases was considered, in the
linear regime, for optical excitations [9], spin waves
[10,11], and excitations in optical lattices [12]. Motivated
by the work on fermion superfluidity [1,5], here we focus
on the pairing dynamics of fermions [13–17] induced by a
sudden change of interaction. The collisionless regime
becomes practical in this case due to long relaxation times
�� � �� � @=� [13], where � is the BCS gap, and �� ’
@EF=�2 is the two-fermion collision time estimated at the
energy ’ � near the Fermi level. The pairing mode of a
small amplitude oscillates at a frequency 2�=@ and exhib-
its collisionless dephasing [18]. These conclusions were
extended recently to the nonlinear regime [19].

This behavior changes drastically as the perturbation
increases. The main result of this work, as summarized in
Fig. 1, is prediction of a dynamical transition resulting
from competition between synchronization and collision-
less dephasing, taking place as a function of the initial
06=96(23)=230403(4) 23040
pairing gap, �s. We found three qualitatively different
regimes (A, B, and C) with the critical points at �AB �

e��=2�0 and �BC � e�=2�0, where �0 is the equilibrium
pairing amplitude in the final BCS state. Below the A-B
transition, �s <�AB, individual Cooper pair states syn-
chronize and the pairing amplitude oscillates between ��
and �� without damping. In contrast, in the interval
�AB � �s < �BC the pairing amplitude is Landau damped
and exhibits decaying oscillation, saturating at an asymp-
totic value, �a, with nonmonotonic dependence on �s. A
second transition occurs at �s � �BC. The dynamics be-
comes overdamped at �s >�BC, and ��t� decreases to
zero without oscillations. The oscillation amplitude and the
asymptotic value �a vanish continuously at the critical
points A-B and B-C, as in a type II transition. We demon-
3-1 © 2006 The American Physical Society
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FIG. 2 (color online). (a) The pairing amplitude ��t� for the
initial state (4) with �s � 0:05�0 as recorded from the simula-
tion, oscillating between �� � 0:97�0 and �� � 0:31�0;
Synchronization (b) of the phase �p time dependence, Eq. (7),
for �p � 0;�0; 2�0, and (c) frequency !p vs �p.
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FIG. 3 (color online). Dephased dynamics. (a) Simulated ��t�
for the initial states (4) with �s � 0:21�0; 4:5�0 with the
asymptotic values �a � 0:81�0; 0:12�0; Overdamped dynam-
ics. (b) Same as in (a) with �s � 4:81�0 and �a � 0; (c) The
phase �p time dependence, Eq. (7), for energies �p � 0;�0;
2�0 (bottom to top) for �s � 0:21�0; (d) The frequency !p vs
�p for �s � 0:21�0 (dashed line) and �s � 4:81�0 (solid line).
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strate that these results are consistent with the spectral
analysis [20] based on the integrability of the problem.

We also address the behavior on a long time scale, t *

��, after dissipation sets in. We find that energy relaxation
in a closed system, such as an atom trap, makes it evolve to
a new equilibrium state. Both the temperature T	 and the
gap ��T	� exhibit a nonmonotonic dependence on the
initial conditions (Fig. 1).

In our analysis of the BCS problem we employ the well-
known pseudospin formulation [21] in which spin 1=2
operators s
p � sxp 
 is

y
p describe Cooper pairs �p;�p�.

The BCS Hamiltonian takes the form

H � �
X

p
2�ps

z
p � ��t�

X
p;q
s�p s

�
q ; (1)

where �p � p2=2m�� is the free particle spectrum with
� the Fermi energy. Here we consider the time evolution
induced by an instantaneous change of interaction from �s
at t < 0 to � at t > 0. In the spin formulation, Eq. (1), the
dynamics is of a Bloch form

drp

dt
� 2bp � rp; bp � ���x;�y; �p�; (2)

where rp � 2hspi are classical vectors, and the effective
magnetic field bp depends on the pairing amplitude �. The
latter is defined self-consistently:

� � �x � i�y �
��t�

2

X
p
r�p ; r�p � rxp � ir

y
p: (3)

We first present numerical results for the dynamics (2) and
(3). The Runge-Kutta method of the 4th order was used
with N � 104; 105 equally spaced discrete energy states
within a band W � 50�0 with a constant density of states
��EF�. As an initial state we take

r�p �0� �
�s������������������

�2
s � �

2
p

q ; rzp�0� �
�p������������������

�2
s � �

2
p

q : (4)

which describes the T � 0 paired ground state [21].
Without loss of generality we set ��t� � �x, since the
phase of � is a constant of motion due to the particle-
hole symmetry of the model. The interaction constants �s
and � define, via the self-consistency relation (3), the
initial and final equilibrium BCS gap values, �s �

We�1=gs , gs � �s�� 1, �0 � We�1=g, g � ��, which
we use to parameterize the system.

We observe three qualitatively different dynamical re-
gimes. The initial states with a relatively small gap give
rise to undamped oscillations [Fig. 2(a)]. In this case ��t�
oscillates nonharmonically between �� and �� (the re-
gime A in Fig. 1). Synchronization of different Cooper pair
states results from their interaction with the mode singled
out by BCS instability of the initial state, similar to the
evolution from the normal state [13].

Desynchronization takes place at �s � �AB � 0:21�0

giving rise to two different regimes exhibiting dephasing,
underdamped and overdamped (B and C, Fig. 1). The
former, illustrated in Fig. 3(a), is simplest to understand
23040
for a small initial deviation, �s ’ �0 [18], by linearizing
Bloch equations about the equilibrium state. The analysis
predicts damped oscillations at long times:

��t� � �a � A�t� sin�2�at� ��; A�t� / t�1=2: (5)

The power-law decay of A�t� was explained in Ref. [18] by
interaction of the collective mode with the continuous
spectrum of excitations with energies above 2�a and
linked to the linear Landau damping. In the spin formula-
tion, the dephasing results from the Larmor frequency of
spin precession bp being a continuous function of �p. An
extension of this argument to the nonlinear regime was
proposed recently in Ref. [19] which, however, did not
3-2
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clarify the range of its validity. The dephased time evolu-
tion similar to (5) was also reported in Refs. [15–17].

In the overdamped regime, �s � �BC � 4:81�0

[Fig. 3(b)], ��t� decays to zero without oscillations. This
behavior can be understood in the limit �s=�0 � 1, i.e.,
when the coupling is turned off nearly completely. Treating
different spins as precessing freely and independently,
r�p �t� � e�i2�ptr�p �0�, from Eq. (3) we find

��t� ��1
s � / ��st��1=2e�2�st: (6)

The fast dephasing can also be understood by noting that
the energy distribution in (4) corresponds to an effective
temperature T  �s which exceeds Tc for �0 (see below).

To fully exhibit phase locking in the synchronized re-
gime which abruptly disappears in the dephased regime,
we now explore the phase dynamics. It is convenient to
measure precession angles relative to time-independent
~bp � ���a; 0; �p�, where �a is the asymptote ��t! 1�
in the regimes B, C, and the average value of oscillating
��t� in A (dash-dotted line in Fig. 1). The angle and
frequency of precession are defined by

n�p � nxp � in
y
p / e�i�p�t�; !p�t� � d�p=dt; (7)

where the vectors np are obtained from rp by a rotation
about the y axis which maps ẑ onto ~bp: nyp � ryp, nxp �
inzp � ei	p�rxp � ir

z
p�, with the rotation angle defined by

tan	p � �a=j�pj. The phase evolution, which becomes
linear at long times �� ��1

0 (Figs. 2 and 3), can be
characterized by average frequency (phase slope) !p �

hd�p=dti � ��p��� ��p�0��=�. While in the regime A
different p states phase lock [Figs. 2(b) and 2(c)], in the
regimes B, C the frequencies !p have dispersion
[Figs. 3(c) and 3(d)]. The latter reproduces a quasiparticle
spectrum, !p � 2��2

p � �2
a�

1=2 with the long-time asymp-
tote �a which vanishes in the overdamped regime C.

We observe a qualitative change in behavior, with !p

dispersing in the regions B, C and phase locking in the
region A. However, the oscillation amplitude 1

2 ��� ����
in A and the asymptotic amplitude �a in B vanish contin-
uously at the critical points � � �AB;�BC (Fig. 1), indi-
cating a type II transition.

Until now, we considered the dissipationless dynamics
at times shorter than the quasiparticle relaxation time, t &

��. Using the energy balance argument, one can determine
the equilibrium state at a long time. To account for system
equilibration, one needs to consider the full many-body
Hamiltonian which enables elastic scattering of individual
quasiparticles, omitted in Eq. (1). For a closed system, such
as an atomic trap, the final temperature T	 and the gap �	
can be determined from the energy conservation condition
Et*���T	� � E0, where E0 is the energy immediately after
interaction switching,

E0 �
X

p
��p � ~�p� �

�2
s

�s

�
2�

�
�s

�
; (8)
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with the spectrum ~�p � ��2
p � �2

s�
1=2, and Et*���T	� is the

energy of the final state:

Et*���T	� �
X

p
��p � �1� 2np�~�p��	�� �

�2
	

�
: (9)

Here np � 1=�1� e~�p��	�=T	 � describes equilibrium with
T � T	, ~�p��	� � ��

2
p ��2

	�
1=2. After integrating over

�p, we arrive at the equation for T	:

F
�

�	
2T	

�
� 1�

�
�s

�	

�
2
� �

�
�s

�	

�
2

ln
�

�s

�0

�
2
; (10)

where F�u� � 2
R
1
0 dx cosh2x�1� tanh�u coshx��, and

� � 1� g ln��s=�0�. From Eq. (10) we obtain T	 and
the equilibrium gap �	 � ��T	�. Being approximately
constant in the regime A, T	 � 0:72Tc, ��T	� � 0:81�0,
these quantities have nonmonotonic dependence in B, with
� vanishing in C. The system turns normal in the final state
for �s � f�g��0, f�g� � 2:1� 0:8g�O�g2�. The nu-
merical solution of Eq. (10) at g � 0:26 is displayed in
Fig. 1 (dashed line).

It is instructive to compare our results to the spectral
analysis based on the integrability of the BCS Hamiltonian
[20,22,23]. There is an infinite number of commuting
integrals of motion, Rp � Lpsp, parameterized by p,
where, following Ref. [20], we employ the Lax vector,

L p � ẑ� �
X

p0�p

sp0

�p � �p0
: (11)

We will need L2
p � 4�Lpsp�

2 which is also conserved [due
to the Pauli matrices algebra combined with Eq. (11)]. The
mean-field expressions are obtained by substituting the
averages hspi instead of sp.

The spectral polynomial defining the evolution of indi-
vidual states is proportional to the square of the Lax vector
[20], Q��� � L2���

Q
p��� �p�

2, where L��p� � Lp. The
pairs of complex roots of the spectral equation Q��� � 0
uniquely determine the long-time dynamics of the system
[20]. Evaluation of L2�y� for the initial state (4) gives

L 2�y� � g2

�
ln

�s

�0
� yG�y�

�
2
� g2G2�y�; (12)

G�y� �
1

2

Z 1
�1

dx
y� sinhx

�
1

2
��������������
1� y2

p ln
y�

��������������
1� y2

p
y�

��������������
1� y2

p ;

where y � �=�s is complex. One can see that the roots of
L2�y� lie on the imaginary axis. Upon variation of �s they
disappear at y � 0. Expanding about y � 0, we obtain

L 2�y� � g2

�
ln

�s

�0
�
�
2

��
ln

�s

�0
�
�
2

�
�O�y�: (13)

Thus L2�y� has no complex roots at �s=�0 � e�=2, one
pair of roots y � 
iu when e��=2 � �s=�0 < e�=2, with
another pair appearing at �s=�0 < e��=2.

There is a direct correspondence between this behavior
of the roots and the dynamical regimes A, B, and C
3-3
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FIG. 4 (color online). The pairing amplitude ��t� as a function
of time for the initial state (4) with �s � 0:01�0 as recorded
from numerical simulation. At long time, numerical ��t�
matches the analytic form in Eq. (14), oscillating nonharmoni-
cally between �� � 0:997�0 and �� � 0:093�0.
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observed numerically. The pairing amplitude is subject to
fast dephasing and tends to zero when L2�y� does not have
complex roots. A pair of complex roots ya � 
i�a=�s
defines the long-time asymptote ��t� � �a. Two pairs of
roots, y � 
iu1 and y � 
iu2, correspond to the parame-
ters �
 � �u1 
 u2��s of the Jacobi elliptic function [24]
which defines the asymptotic behavior:

��t� ��� dn����t� �0�; k�; k� 1��2
�=�2

�; (14)

where the time lag �0 is a half of the period. As illustrated
in Fig. 4, Eq. (14) agrees well with ��t� found numerically.
Thus the spectral analysis is in accord with the simulation
of Bloch dynamics. It confirms the existence of the three
regimes and also provides the exact values �AB �

e��=2�0 and �BC � e�=2�0.
Finally, we estimate the change of scattering length

required to cross the A-B and B-C transitions. Using the
BCS gap in a weakly interacting Fermi gas [25], � �
0:49EFe�1=g, g � 2

� kFjaj, we see that the conditions
�s=�0 � e
�=2, written as 1=g� 1=gs � 
�=2, trans-
late into 1=a� 1=as � 
kF. At weak coupling this cor-
responds to a small change of scattering length,

a=a � 
kFa, easily achievable for magnetically tunable
Feshbach resonance. In such an experiment, at the times
shorter than the thermalization time, one expects to ob-
serve the two regimes of dissipationless dynamics dis-
cussed above, oscillatory and dephased. The amplitude of
the oscillations persistent at long times vanishes continu-
ously at the threshold as in a type II transition.

We are grateful to Boris Spivak and Kumar Raman for
helpful discussions.

Note added in proof.—Recently, the B-C crossover and
the properties of the fully dephased regime C were ex-
plored independently by Yuzbashyan and Dzero [26].
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