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Biased Tomography Schemes: An Objective Approach
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We report on an intrinsic relationship between the maximum-likelihood quantum-state estimation and
the representation of the signal. A quantum analogy of the transfer function determines the space where
the reconstruction should be done without the need for any ad hoc truncations of the Hilbert space. An
illustration of this method is provided by a simple yet practically important tomography of an optical
signal registered by realistic binary detectors.
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The development of effective and robust methods of
quantum-state reconstruction is a task of crucial impor-
tance for quantum optics and information. Such methods
are needed for quantum diagnostics: for the verification of
quantum-state preparation, for the analysis of quantum
dynamics and decoherence, and for information retrieval.
Since the original proposal for quantum tomography and
its experimental verification [1,2] this discipline has re-
corded significant progress and is considered as a routine
experimental technique nowadays. Reconstruction has
been successfully applied to probing the structure of en-
tangled states of light and ions, operations (quantum gates)
with entangled states of light and ions or internal angular
momentum structure of correlated beams, just to mention a
few examples [3].

All these applications exhibit common features. Any
successful quantum tomography scheme relies on three
key ingredients: on the availability of a particular tomo-
graphically complete measurement, on a suitable represen-
tation of quantum states, and on an adequate mathematical
algorithm for inverting the measured data. In addition, the
entire reconstruction scheme must be robust with respect to
noise. In real experiments the presence of noise is unavoid-
able due to losses and due to the fact that detectors are not
ideal. The presence of losses poses a limit on the accuracy
of a reconstruction. However, the very presence of losses
can be turned into advantage and used for the reconstruc-
tion purposes. As has been predicted in Ref. [4], imperfect
detectors, which are able to distinguish only between the
presence and absence of signal (binary detectors) provide
sufficient data for the reconstruction of the quantum state
of a light mode provided their quantum efficiencies are less
than 100%. The presence of losses is thus a necessary
condition for a successful reconstruction: An ideal binary
detector would measure only the probability of finding the
signal in the vacuum state.

The required robustness of a tomography scheme with
respect to noise is often difficult to meet especially if it is
biased, that is, if some aspects of the quantum systems in
question are observed more efficiently than the others.
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Since our ability to design and control measurements is
severely limited, this situation will typically arise when
one wants to characterize a system with a large number or
infinitely many degrees of freedom, for instance in the
quantum tomography of light mode mentioned above.
The standard approach is to truncate the Hilbert space by
a certain cutoff, reducing drastically the number of pa-
rameters involved [5]. Needless to say, such ad hoc trun-
cation lacks physical foundation. It may have bad impacts
on the accuracy of reconstruction or conversely it may lead
to more regular results. The latter case may easily happen
when an experimentalist seeks for the result in the neigh-
borhood of the true state. Such a tacitly accepted assump-
tion may appear as crucial as it allows elimination of the
infinite number of unwanted free parameters. This draw-
back erodes the notion of tomography as an objective
scheme.

In this Letter we propose a reconstruction procedure that
is optimized with respect to the experimental setup, repre-
sentation and inversion, designed for dealing with biased
tomography schemes. The recommended approach to the
generic problem of quantum-state tomography will be
demonstrated on the scheme of a light mode adopting
elements of linear optics (beam splitter) with realistic
binary detectors detecting the presence or absence of the
signal only. In addition, we for the first time present a
statistically correct description of such a tomographic
scheme.

Let us develop a generic formalism for the maximum-
likelihood (ML) inversion of the measured data. Let us
assume detections of a signal enumerated by the generic
index j. Their probabilities are predicted by quantum
theory by means of positive-operator-valued measure
(POVM) elements Aj,

pj � Tr�Aj��; 0 � Aj � 1; (1)

� being the quantum state. The observations Aj are as-
sumed to be tomographically complete in the Hilbert sub-
space we are interested in. No other specific assumptions
1-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.230401


PRL 96, 230401 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
16 JUNE 2006
about the operators Aj, their commutation relations or
group properties will be made. In general, probabilities
pj are not normalized to one as the operator sumX

j

Aj � G � 0 (2)

may differ from the identity operator. Theoretical proba-
bilities pj can be sampled experimentally by means of
registered data Nj. The aim is to find the quantum state �
from data Nj.

The ML scenario hinges upon a likelihood functional
associated with the statistics of the experiment. In the
following, we will adopt the generic form of likelihood
for un-normalized probabilities [6]

logL �
X
j

Nj log
� pjP

j0 pj0

�
; (3)

which should be maximized with respect to �. Here the
index j runs over all registered data. The extremal equation
for the maximum-likely state can be derived in three steps:
(i) The positivity of � is made explicit by decomposing it
as � � �y�. (ii) Likelihood (3) is varied with respect to
independent matrix � using ��logpj�=�� � Aj�y=pj;
(iii) Obtained variation is set equal to zero and multiplied
from right side by � with the result

R� � G�; R �
X
j

P
j0 pj0P
j0 Nj0

Nj
pj���

Aj; (4)

where the operator G is defined by Eq. (2) and operator R
depends on the particular choice of L. Notice that this
equation may be cast in the form of expectation-
maximization (EM) algorithm [7]

RG�G � �G; (5)

where RG � G�1=2RG�1=2 and �G � G1=2�G1=2. This ex-
tremal equation may be solved by iterations in a fixed
orthogonal basis. Keeping the positive semidefiniteness
of �G [by combining Eq. (4) with its Hermitian conjugate]
the �n	 1�th iteration reads

��n	1�
G � R�n�G �

�n�
G R

�n�
G ; R�n�G � G�1=2R���n��G�1=2:

Starting with some initial guess ��0�G the iterations are
repeated until the fixed point is reached. In terms of �G,
the desired solution is then given by

� � G�1=2�GG
�1=2: (6)

Going back to likelihood in Eq. (3) we now see that the
operator G coming from the mutual normalization of prob-
abilities,

P
jpj � Tr��G�, provides a complete (normal-

ized) POVM, which is equivalent to the original biased
observations Aj:

P
jG
�1=2AjG

�1=2 � 1G. This establishes
the preferred basis for a reconstruction. Due to the division
by the operator G in Eq. (6) and in the sentence above the
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reconstruction can be done only in the subspace spanned
by the nonzero eigenvalues of G. The spectrum ofG plays,
therefore, the role of tomographic transfer function analo-
gously to the transfer function in optical imaging. It quan-
tifies the resolution of the reconstruction in the Hilbert
space. A large eigenvalue of G indicates that many obser-
vations overlapped in the corresponding Hilbert subspace
and this part of the Hilbert space is more visible. The
Hilbert subspace where the reconstruction was done is
clearly not a subject of a free choice in the proper statistical
analysis. This is the main result of this Letter. This also
gives a clue how to approximate the solution in the infinite
dimensional case simply by taking the subspace corre-
sponding to the dominant eigenvalues. The result of recon-
struction can be easily checked in the preferred basis
afterwards. If the reconstructed state exhibits dominant
contributions for the components with relatively small
eigenvalues of G, the result cannot be trusted.

The essence of the correct reconstruction inhere in the
following recommended scenario: After collecting all data
the optimal basis for reconstruction is identified as eigen-
vectors of G operator. The truncation is achieved by taking
into account only those with dominant eigenvalues, where
the ML extremal equation should be solved keeping the
semipositive definiteness of the density matrix. This estab-
lishes the quantum tomography as an objective tool for the
analysis of infinite dimensional quantum systems. Indeed,
previously reported results of tomographic schemes have
always considered the space for reconstruction ad hoc: If
one knows what the result should be it is not really difficult
to get it.

Let us illustrate this procedure on the following simple
realistic detection setup: the signal state (described by the
density matrix �) of the input mode a is mixed on a beam
splitter with the probe coherent state j�i of the mode b and
the mixed field is detected on a single on-off detector. Then
the probability p of having no counts on the detector is
measured.

Such nonideal measurements have already been used for
tomography purposes. The inference of a photon number
distribution was proposed in Ref. [8] and experimentally
realized in Ref. [9]. A more advanced setup based on a
multichannel fiber loop detector was developed and ex-
perimentally verified earlier in Ref. [10]. As proposed in
Refs. [11,12], the reconstruction of a full density matrix
can be done by measuring a coherently shifted signal. This
reconstruction technique has also been implemented ex-
perimentally as a direct counting of Wigner function [13].
However, the algorithms used for the quantum-state recon-
struction were not robust as indicated by the fact that they
could give nonphysical results. This is due to the a priori
constraints put on a quantum object, namely, the semi-
positive definiteness of a density matrix � � 0, which is
not guaranteed in the above mentioned schemes. While it
seems to be intractable to implement the condition of
1-2
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positive semidefiniteness in Wigner representation, it can
be done in the general formalism adopting the maximum-
likelihood estimation.

The probability of registering no counts on the detector
is given by Mandel’s formula [14]:

p � h: expf��ccycg :i; (7)

where �c is the efficiency of the detector; cy and c are
creation and annihilation operators of the output mode, and
:: denotes the normal ordering. For simplicity, we assume
here that in the absence of the signal the detector does not
produce any clicks; dark count are ignored. Let us assume
that the beam-splitter transforms input modes a and b in
the following way: c � a cos��� 	 b sin���. Averaging
over the probe mode b, from Eq. (7) one obtains

p �
X
n�0

�1� ���nhnjDy����D���jni; (8)

where �� � �ccos2���, � � �� tan���, D��� �
expf�ay � �
ag is the coherent shift operator, and jni
denotes a Fock state of the signal mode a. Using the
operator notation Rn;� � D���jnihnjDy���, the no-count
probability is generated by the POVM elements A�;� �P
n�1� ��

nRn;� and, defining a collective index j �
f�; �g, the counted probability coincides with Eq. (1).

Figure 1 shows how a suitable choice of � points for a
fixed truncation number Ntr � 15 can be achieved.
Obviously, the amount of data used in Fig. 1(a) as com-
pared to Fig. 1(b) is excessive for the reconstruction. On
the other hand, when the number of points is too small, or
they are chosen in an inappropriate way, eigenvalues of G
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FIG. 1. Eigenvalues of the matrix G (2) truncated at Ntr � 15.
The simulated measurement was done at Np � points equidis-
tantly distributed in regions: (a) and (b) Re��� 2 ��2; 2�,
Im��� 2 ��2; 2�; (c) Re��� 2 ��1; 1�, Im��� � 0;
(d) Re��� 2 �1; 1:01�, Im��� � 0. In all panels, 10 equidistant
values of the detector efficiency were chosen from the interval
	 2 �0:1; 0:9�.
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differ strongly making reconstruction unfeasible. For ex-
ample, in Fig. 1(d) the last eigenvalue is only �10�5.
However, one needs to mention that the analysis of G
provides a necessary but not sufficient condition of the
reconstruction feasibility. In particular, a single � point
measurement is not sufficient ( just like a measurement in
� � 0 is able to give only the diagonal elements). One
needs to measure in at least two different nonzero � points.
The confidence interval on the reconstructed density ma-
trix elements can be provided with help of variance
���mn� � �F��mn�Nmes�

�1=2, where Nmes is the total num-
ber of measurements, and the Fisher information F can be
defined for real part of the density matrix elements as [15]

F�Re��mn�� �
X
j

P
j0 pj0

pj

�
@

@Re��mn�

pjP
j0 pj0

�
2
; (9)

and similarly with Re changed to Im for imaginary part of
�.

To illustrate our discussion, let us consider a reconstruc-
tion of the following state (Fig. 2):

j�i � �j0i 	 expf0:5igj2i�=
���
2
p
: (10)

The simulation was done using a total of 107 measurements
collected in five different points on the phase plane �. In
Fig. 2(a) one can see the eigenvalues of the matrix G (2).
Obviously, the chosen set of points is suitable for the
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FIG. 2. A reconstruction of the state (10) according to proce-
dure (5). The following measurements were used: Re��� �
�0:2;�0:1; 0; 0:1; 0:2; Im��� � 0:1;�0:5; 0; 0:5; 0:1; 20 equi-
distantly distributed detector efficiencies in the interval
�0:1; 0:9� were used; the Hilbert space was truncated at Ntr �
5. Panel (a) shows the eigenvalues of the matrix G. Panels (b)
and (d) show the real and imaginary parts of the reconstructed
matrix (in Fock basis). They were obtained using 106 iteration of
the EM algorithm. Panel (c) shows the variances of the real part
(n � m) and imaginary part (n > m) of the reconstructed ele-
ments given by Eq. (9).
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reconstruction. Notice the correlation between decreasing
eigenvalues and increasing errors in Figs. 2(a) and 2(c).

This objective approach may be compared with alter-
native schemes based on the reconstruction of Wigner
function. Measurement in any given � point is able to
give a value of the Wigner function in that point. Indeed
[16],

W��� �
2




X
n�0

��1�nRn;�; (11)

where Rn��� � Tr��Rn;�� � hnjDy����D���jni. For a
fixed value of the amplitude � one should seek the set of
non-negative matrix elements Rn;� and plug in these values
into the definition of the Wigner function (11). These
matrix elements can be found by inverting the counted
statistics (8) measured with a set of different efficiencies
solving a linear positive inverse problem. This can be
accomplished by means of the EM algorithm similarly to
the approach used in Ref. [17]. An example of such a
reconstruction is shown in Fig. 3. Though the reconstruc-
tion seems to be faithful, one should keep in mind that even
very small deviations from the true Wigner function might
make it nonphysical. Such a Wigner function would not
correspond to any physical, positive definite density ma-
trix. This is due to the fact that the operators Rn;� do not
commute for different �’s, so noisy measurements may
give inconsistent results. Going back from Wigner function
to the density matrix using Glauber’s formula [18], � �
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FIG. 3. A reconstruction of the signal coherent state � �
expfi
=4g. (a) The reconstructed Wigner function; (b) the di-
agonal elements of the reconstructed density matrix; (c) the
difference between the exact and the reconstructed Wigner
functions; (d) the variance ���; �
�. The Wigner function was
reconstructed pointwise at 2500 points of the phase plane from
Nr � 104 measurements per point using Nit � 103 iterations of
the EM algorithm. The Hilbert space was truncated at Ntr � 12;
30 different values of detector efficiencies were used equidis-
tantly distributed in the interval �0:1; 0:9�.
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2
R
d2���1�nW��
; ��D�2��, one can see in Fig. 3(b), that

some diagonal elements of the reconstructed matrix are
negative.

A generic biased tomography scheme addressing some
aspects of the quantum systems more efficiently than other
aspects has been introduced. Its performance is character-
ized by quantum analogy of transfer function, which may
be further optimized to achieve the desired resolution. This
establishes tomography as an objective tool for quantum
diagnostics. The recommended approach was demon-
strated on a simple, robust and effective quantum tomog-
raphy scheme using detectors that are only capable of
distinguish between the presence and absence of photons.
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