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How Long Does It Take to Pull an Ideal Polymer into a Small Hole?
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We present scaling estimates for characteristic times �lin and �br of pulling ideal linear and randomly
branched polymers of N monomers into a small hole by a force f. We show that the absorbtion process
develops as sequential straightening of folds of the initial polymer configuration. By estimating the typical
size of the fold involved into the motion, we arrive at the following predictions, �lin�N� � N3=2=f and
�br�N� � N

5=4=f, and we also confirm them by the molecular dynamics experiment.
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There are models in physics—most famously exempli-
fied by an Ising model—whose importance is not due to
their practical applicability to anything, in particular, but
because they provide the much needed training ground for
our intuition and for the development of our theoretical
methods. In polymer physics, one of the very few such
models is that of ideal polymer absorbtion into a pointlike
potential well. For a homopolymer in equilibrium, this is a
clean yet interesting example of a second order phase
transition [1,2]. For a heteropolymer, even in equilibrium,
the problem is still not completely understood—see, for
example, [3–6]; mathematically it is similar to the local-
ization (pinning) transition in the solid-on-solid models
with quenched impurities [7–9].

Surprisingly enough, the dynamics of a polymer chain
pulled into a potential well is almost not discussed at all.
On the first glance, one might think that this dynamics
should be related to the dynamics of coil-globule collapse
[10–14], but the similarity between these two problems is
limited. Indeed, globule formation after an abrupt solvent
quench begins by a simultaneous chain condensation on
many independent nucleation centers, while the absorbtion
process can be viewed as pulling of a polymer with a
constant force into a single hole. Hence, only a single
attractive center causes the chain condensation. In this
sense, dynamics of absorbtion into a potential well is
more similar to a driven polymer translocation through a
membrane channel [15–19].

To describe in words the polymer pulled into a hole, let
us imagine a long rope randomly dropped at the desk top.
Pull now the rope by its end down from the desk edge. It is
obvious, and can be established through an experiment
accessible even to theorists, that the rope does not move
all at once. What happens is only a part of the rope moves
at the beginning, such that a fold closest to the end straight-
ens out. As soon as the first fold is straightened, it then
transmits the force to the next fold, which starts moving,
and so on. The rope sequentially straightens its folds, such
that at any moment only part of the rope about the size of a
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current fold is involved in the motion, while the rest of the
rope remains immobile.

In the present Letter we show how this mechanism
applies to an ideal homopolymer dynamics and how it
sheds light on the physics behind scaling estimates [19]
for the relaxation times for both linear, �lin, and randomly
branched, �br, polymers.

We address the problem on the simplest level of an ideal
Rouse homopolymer of N monomers, each of size a,
embedded into an immobile solvent with the viscosity �.
One end of the chain is put in the potential well (the
‘‘hole’’), and the polymer is pulled down to the hole with
constant force f, acting locally on just one single mono-
mer, the one currently entering the hole. We will be inter-
ested in the relaxation time � of the complete pulling down
of the entire polymer into the hole; we want to know how �
depends on polymer length N and the pulling force f.
Neglecting inertia, the balance of forces reads f � ffr�t�,
where friction force ffr should be linear in velocity dn

dt , with
n�t� being the number of monomers ‘‘swallowed by the
hole’’ by the time t. More subtly, the friction coefficient
must be proportional to the number of monomers m�t�
currently involved in the forced motion: ffr � �a2m�t��
dn�t�
dt . Our main task will be to estimate the length m�t�

involved in the motion for either linear or branched
polymers.

In order to clarify our approach, let us compute the
characteristic time � of pulling down of an initially
stretched linear polymer. In this case, all monomers
move except those already absorbed in the hole, so m�t� �
N � n�t�, and so the force balance condition reads

f � �a2�N � n�t��
dn�t�
dt

: (1)

Upon integration, this yields

�straight �
�a2

2f
N2: (2)
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In terms of dependence on N, this result is similar to the
Rouse relaxation time of a linear polymer, �R ’ �0N

2,
where �0 ’ �a3=kBT, and T is temperature. Our estimate,
(2), remains valid as long as �straight < �R, because in this
case the initially straight polymer has no time to coil up on
itself while being pulled up by the force f. Given the
expression for �straight, (2), the condition �straight < �R trans-
lates into f > kBT=a, the latter making obvious sense:
pulling force should be strong enough to cause significant
stretching of every bond, or, in other words, Pincus blobs
must be as small as of the order of 1 monomer [20].

Now we turn to more realistic dynamics starting from a
Gaussian coil configuration, and look at �lin�N�. To begin
with, let us consider a simple scaling estimate [19]. First of
all, we note that the only time scale relevant for the prob-
lem is the above mentioned Rouse time �R, which is the
time needed for the coil to diffuse over the distance about
its own size, R� aN1=2. With �R being the solitary rele-
vant time scale, the absorbtion time should be written in the
scaling form

�lin � �R�
�
fR
kBT

�
; (3)

where the factor � can depend on all other relevant pa-
rameters only in the dimensionless combination fR=�kBT�.
The second step follows from the fact that the speed of the
process, N=�lin, must be linear in the applied force, which
means that the function ��x� should be inversely propor-
tional to its argument, ��x� � 1=x. This then yields

�lin � �R
kBT
fR
�
�a2

f
N3=2: (4)

The scaling argument gives the answer, but does not give
much insight. To gain proper insight, let us show how this
same answer results from the process of sequential fold
straightening. The definition of ‘‘folds’’ and of their
lengths sfol�N� is illustrated in Fig. 1. Since the chain is
being pulled all the time into an immobile point in the
center, the definition of a fold arises from considering only
the radial component of the random walk, jr�s�j, where r�s�
FIG. 1 (color online). Random coil viewed as a sequence of
folds.
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stands for the (natural) parametric representation of a path.
In 3D, for example, jr�s�j represents Bessel random pro-
cess [21,22]. To obtain lengths of folds, s�1�fol ; s

�2�
fol ; . . . ; s�k�fol,

one has to coarse grain the trajectory up to the one mono-
mer scale a, thus making a Wiener sausage, and then find
the local minima of jr�s�j separated by the biggest maxima.
It is obvious that there are about

����
N
p

of such minima,
separated by the intervals about

����
N
p

each.
When we pull down the Gaussian chain by its end with a

constant force f, only the current fold, of the length s�i�fol �����
N
p

, is involved in the forced motion and experiences
friction. The Eq. (1) is still valid, but N should be replaced
by s�i�fol and n should be integrated in the limits �0; s�i�fol�,
yielding relaxation time for one fold

�fol �
�a2

2f
�s�i�fol�

2 �
�a2

f
N: (5)

All �
����
N
p

folds relax sequentially, meaning that �lin �����
N
p

�fol, and thus returning the scaling answer (4).
Notice that the absorbtion time of a linear chain, �lin,

Eq. (4), is much shorter than the typical Rouse time under
the very weak condition f > kBT=�a

����
N
p
�, which means the

Pincus blob dictated by the force f should only be smaller
than the entire coil. Under this condition, during the ab-
sorbtion process the configuration of the chain parts not
involved into the straightening of a current fold, can be
considered as quenched.

To understand the chain pulling dynamics even better, it
is useful to consider another fundamental fractal model,
that of a randomly branched polymer, schematically shown
in Fig. 2. To find the scaling approach for the randomly
branched polymer, we have to estimate the analog of Rouse
time as the time for a polymer to diffuse to its own size.
Since all monomers experience friction independently of
each other (there are neither solvent dynamics, nor hydro-
dynamic interactions), it follows that the diffusion coeffi-
cient of a Rouse coil, linear or branched, is given by
D� kBT=��aN�. However, the radius of a branched poly-
FIG. 2 (color online). Randomly branched chain and the cor-
responding hierarchy of scales.
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FIG. 3 (color online). Log-log plot of relaxation time against
N. The units: a � 1, kBT � 1, and � � 10. Bullets (�)—
initially straightened linear chain, squares (�)—initially coiled
linear polymer, triangles (�)—randomly branched polymers.
The slopes are consistent with theoretical predictions. Inset: time
dependence of the k�t� in the log-log scale. Here k�t� is the
monomer number such that at the given time moment t mono-
mers before k are already strongly involved in the biased motion
towards the absorbing hole, while monomers after k are still
diffusing, not influenced by the force.
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mer, unlike a linear one, is only R� aN1=4. Therefore, the
Rouse relaxation time for the branched polymer reads
�R � �0N

3=2. The rest of the argument repeats exactly
what we have done for the linear chain, yielding the result

�br � �R
kBT
fR
�
�a2

f
N5=4: (6)

Let us show now how one can rederive (6) generalizing
the concept of Bessel process to randomly branched
chains. It is convenient to introduce a hierarchy of scales
in the N-link ideal randomly branched chain. Let us denote
by N1 a number of monomers in a typical ‘‘primitive’’ (or
‘‘bare’’) path of a largest scale. The size R of an ideal
randomly branched polymer is R� aN1=4. The bare path
of the maximal scale is a Gaussian random walk with R�
aN1=2

1 . Hence, N1 � N
1=2. The average number of mono-

mers in all side branches N2; N3; N4, etc., attached to one
bond of the bare path of the maximal scale (as shown in
Fig. 2), is of order ofN=N1 � N

1=2. All these side branches
form a randomly branched configuration of size R2 �

a�N=N1�
1=4 � aN1=8. Now, the number of monomers in

the bare path of the second scale, N2, can be obtained
repeating the above scaling arguments: R2 � aN

1=2
2 , giving

N2 � N
1=4, and so on: N3 � N

1=8; . . . ; Nk � N
2�k ; . . .—

see Fig. 2.
On all scales the bare paths N1; N2; . . .Nk, etc., form the

Gaussian subcoils, each of which can be divided in folds
s�1�fol ; s

�2�
fol ; . . . s�k�fol ; . . . in the same manner as it is done above

for a linear chain. For s�k�fol we have the estimate

s�k�fol � aN
1=2
k � aN2��k	1�

�k � 1; 2; . . .�: (7)

If the randomly branched polymer is pulled by its end
with a constant force, f, then all Gaussian subcoils on all
scales straighten their folds simultaneously. The total typi-
cal number of monomers sall in all folds simultaneously
involved into the motion on all scales can be estimated as

sall � s
�1�
fols
�2�
fols
�3�
fol . . . � aN1=4	1=8	1=16	


 � aN1=2: (8)

We have seen in the example of the linear chain, that the
characteristic time to straighten the fold of a typical length
s is of order of �� s2 —see (5). So, as it follows from (8),
the characteristic time of straightening out all folds of
length sall is of the order of

�br
fol �

�a2

2f
s2

all �
�a2

f
N (9)

In a randomly branched polymer there are N1a=s
�1�
fol inde-

pendent parts, which relax sequentially. Hence, the total
relaxation time can be estimated as �br � �N1a=s

�1�
fol��

br
fol,

which returns the result (6).
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We have tested our results by a molecular dynamics
experiment. We used the standard Rouse model with har-
monic bonds between neighboring monomers along the
chain and with the averaged bond length, a � 1. The
attracting force f acts at any moment on one monomer
only and always points to the origin. Once a given mono-
mer k gets inside the absorbing hole (jrkj<Ra � 1,
where rk is the position vector of the kth monomer) this
monomer is considered absorbed, it does not move any-
more and does not exert any force on monomer k	 1,
its neighbor along the chain—but instead the neighbor
becomes the subject of the steady pulling force f.
The same mechanism was simulated for the randomly
branched polymer, except different branches can be pulled
in parallel. The solution of dynamical equations is real-
ized in the frameworks of the numerical velocity Verlet
scheme [23]. The initial state of the linear chain was
prepared by placing the first monomer at jr1j � Ra. The
initial configuration of the randomly branched polymer
was prepared as described in [24], and then the polymer
was shifted as a whole to place one randomly chosen
monomer on the absorbing surface jrj � Ra � 1. By per-
forming 100 runs, we have computed averaged pulling
times of linear chains from initially elongated and initially
Gaussian conformations, as well as for a randomly
branched polymer. The results are shown in Fig. 3 and
demonstrate very satisfactory agreement with the theoreti-
cal predictions (4) and (6).

In order to check more directly our proposed mechanism
of absorbtion, we have looked at how Gaussian polymer
5-3
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chain gets involved into the biased motion driven by the
pulling force f. The result is shown in the inset of Fig. 3. In
this inset, k�t� marks the crossover between current fold
and the rest of the chain. The current fold is operationally
defined to include all monomers, with numbers j < k�t�,
whose motion is currently strongly affected by the pulling
force f. Other monomers with the numbers j > k�t� are not
yet affected. The simulation indicates that thus defined,
k�t� follows quite accurately the power law k�t� � t2=3 with
the exponent independent of the applied force. Inverting
k�t�, we get t� k3=2, which suggests that the time of
complete absorbtion of a k-length subchain, which is given
by our theoretical prediction (4), and the time of invol-
vingthe k-length subchain in the force-biased motion, scale
in the same way.

To conclude, we have considered scaling estimates of
the relaxation time associated with pulling a linear or
randomly branched polymer chain into a hole by a constant
force f. We found that these estimates, �lin � ��a2=f�N3=2

and �br � ��a
2=f�N5=4, are consistent with the molecular

dynamics simulation and they can be understood in terms
of the scenario of sequential straightening of the polymer
parts which we called folds and which were defined in
terms of the radial component of the random walk repre-
senting the polymer chain.

We have to emphasize that all consideration in this
Letter was restricted to polymer models without excluded
volume in 3D. There is no doubt that self-avoidance, as
well as hydrodynamic interactions will significantly affect
the specific scaling relations obtained here. The account of
excluded volume effects is, to some extent, simpler than
that of hydrodynamic interactions. On the basis of the
scaling approach we can predict the pulling time, ��N� �
N1	�=f, for the polymer characterized by the exponent �
in the relation R� N�. Our consideration is also restricted
in the sense that we did not consider the role of the polymer
part already ‘‘swallowed’’ by the potential well. Although
this might affect the result under some conditions, our aim
was to elucidate the mechanism of sequential straightening
of folds, for that purpose the absorbed tail is irrelevant.
Similarly, in reality the polymer is usually pulled into a
hole in a wall, such as a membrane, and we have neglected
the (presumably logarithmic) factors associated with the
excluded half-space.

However, as we said in the beginning, the purpose of the
model is to facilitate methods and intuition. In this sense,
we think that the consideration of an ideal polymer in this
Letter was fruitful, because the mechanism of sequential
straightening of folds obviously applies to a number of real
physical situations, such as, e.g., DNA translocation
through the membrane pore driven by the difference in
chemical potentials.
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