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Lateral Diffusion and Percolation in Membranes

Bong June Sung and Arun Yethiraj

Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 16 February 2006; published 7 June 2006)

An algorithm based on Voronoi tessellation and percolation theory is presented to study the diffusion of
model membrane components (solutes) in the plasma membrane. The membrane is modeled as a two-
dimensional space with integral membrane proteins as static obstacles. The Voronoi diagram consists of
vertices, which are equidistant from three matrix obstacles, joined by edges. An edge between two vertices
is said to be connected if solute particles can pass directly between the two regions. The percolation
threshold, p., determined using this passage criterion is p. = 0.53. This is smaller than if the connectivity
of edges were assigned randomly, in which case the percolation threshold p, = 2/3, where p is the
fraction of connected edges. Molecular dynamics simulations show that diffusion is determined by

percolation of clusters of edges.
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The lateral diffusion of proteins and lipid molecules in
cell membranes is essential to many physiological pro-
cesses. For example, the mobility of receptors is an im-
portant part of the binding of hormones because this
requires the cross-linking of many receptors which are
distributed on the membrane. The mobility of membrane
components is also essential in diffusion-controlled reac-
tions, such as in the electron transfer reactions involving
cytochromes in the mitochondria.

The cell membrane is a very heterogeneous environ-
ment with several types of lipids and peripheral and inte-
gral membrane proteins, many of which are linked to the
cytoskeleton [1]. An understanding of the biophysics
underpinning the transport of lipids and proteins in com-
plex and heterogeneous environments is therefore of con-
siderable fundamental importance, and there are several
open questions. For example, the diffusion coefficient of
integral membrane proteins is almost an order of magni-
tude smaller in cells than in artificial bilayers, and the
reason for this is not well established [2]. In some cases
this can be explained in terms of interactions with the
cytoskeleton, but in other cases, such as glycosyl phospha-
tidyl inositol (GPI) linked proteins, the interaction with the
cytoskeleton cannot play a significant role. While the
general phenomenology of obstructed diffusion is well
established, the effect of structural details has received
scant attention [2]. In this Letter we investigate the diffu-
sion of solutes in structurally complex two-dimensional
systems using molecular dynamics simulations, and ana-
lyze our results using a Voronoi tessellation method and
percolation theory.

Experimental investigation of the diffusion of mem-
brane components is an active area of research. The diffu-
sion of tagged lipids and proteins in bilayers and cells has
been measured using single particle tracking [3-5] and
fluorescence recovery after photobleaching [6—8]. Experi-
ments on different systems demonstrate a diversity in dy-
namic behavior. For example, in some cases, an anomalous
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diffusion of proteins in the plasma membrane is observed
[9]; i.e., the mean-square displacement, W(z), scales with
time, ¢, as W(t) ~ 1%, with 0.1 < a < 0.9, while in other
systems [10] diffusion is Brownian on the time-scales
investigated. Some experiments suggest that the anchoring
of the membrane to the cytoskeleton results in a partition-
ing into “corrals” with a Brownian diffusion of lipids and
proteins within a corral and a hopping between neighbor-
ing corrals [4], but no signature of these is seen in other
experiments [10].

Three classes of theoretical models have been used for
anomalous diffusion: continuous-time random walk
(CTRW) [11], obstructed diffusion, and binding. In the
CTRW the solute is assumed to follow a random walk,
but the probability of taking a step is a power-law function
of time. The exponent characterizing this waiting time
distribution is simply related to the exponent «.
Obstructed diffusion has been studied using lattice models
where a fraction of the lattice sites are forbidden to the
solute. As the concentration of obstacles is increased, the
system goes through a percolation threshold which marks
the transition between free and confined diffusion [12-14].
For obstacle concentrations near the percolation threshold,
diffusion is anomalous at intermediate times of significant
duration because the solute explores the fractal nature of
the available lattice with many dead ends. To date binding
models have not received much attention.

The analysis of experiments using these models is dis-
cussed in a series of insightful papers by Saxton [2,8]. The
conclusion is that these models, taken individually, are not
capable of explaining the dramatic decrease in diffusion
coefficient observed in experiment. In addition, the univer-
sal applicability of these models is not established. For
example, in lattice models the percolation threshold de-
pends on the coordination number of the lattice, and in
continuum percolation, the percolation threshold is quite
high: for randomly placed nonoverlapping discs the perco-
lation threshold occurs at an occupation fraction of 0.82,
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which is much higher than the area fraction of obstacles in
a membrane.

The effect of the structure of the membrane “‘matrix’’ on
the diffusion of solutes has received little attention. Part of
the difficulty is that this system is an example of quenched
disorder and averaging over the disorder is challenging. In
this Letter we construct a simple model for diffusion in the
plasma membrane. We present a Voronoi tessellation [15—
17] algorithm to map the pores in continuous space to an
effective lattice and analyze diffusion using percolation
theory [18,19]. We argue that the diffusion of solutes is
equivalent to percolation of the edges of the Voronoi
diagram [20-22]. We apply these methods to a simple
problem of hard discs diffusion in a sea of fixed hard discs
and reproduce many of the qualitative features observed in
experiment.

We model the plasma membrane as a two-dimensional
system with a matrix of fixed hard discs of diameter o,,,
which is used as the unit of length, and investigate the
diffusion of hard discs, of diameter o, in this matrix. The
simulation cell is a square of the side length, L, with
periodic boundary conditions, and contains N,, randomly
placed nonoverlapping stationary matrix hard discs. Ny
solute particles are then inserted into the cell. If the sys-
tem is percolating, the particles are inserted into a perco-
lating region as determined from the Voronoi analy-
sis described shortly. The solute area fraction ¢y
(Emr]%N +/AL?) is fixed at 0.1, and the matrix area frac-

tion ¢, (=mwo?N,,/4L?) is varied from 0.1 to 0.3. In
the simulations reported N,, varies from 64 to 6144, de-
pending on ¢,, and L. Properties are averaged over 10
different realizations of the matrix. The dynamic proper-
ties are obtained from discontinuous molecular dy-
namics (DMD) simulations [23,24]. This method has the
advantage that it is deterministic, stable over long times,
and one can ‘“‘replay”’ a simulation. The disadvantage is
that hydrodynamic interactions are ignored. As a check,
we also perform dynamic Monte Carlo simulations and
the results are in excellent agreement with the DMD
simulations.

There are three characteristic regimes of solute dynam-
ics. For low values of ¢,, diffusion is normal (¢ = 1) at all
times, and as ¢, is increased the diffusion becomes
anomalous for intermediate times. For sufficiently large
¢,, (above the percolation threshold) the solute particles
are confined and do not diffuse. Figure 1 depicts simulation
results for the time exponent in the anomalous regime, «,
as a function of ¢,, for oy = o,,. The figure shows that
normal diffusion occurs for ¢,, = 0.1 and that the solutes
are confined for ¢,, > 0.22, with anomalous diffusion in
the intermediate regime. The percolation threshold there-
fore occurs for ¢,, = 0.22. Note that in the “anomalous”
regime below the percolation threshold the diffusion will
become normal at long times, although that regime is not
accessible in our simulations.
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FIG. 1. Simulation results for time exponents of the mean-

square displacement, W(z), as a function of ¢,,. The inset shows
W(z) for ¢,, = 0.1, 0.2, and 0.25.

We map our model onto a lattice model using Voronoi
tessellation and then analyze this using percolation theory.
In Voronoi tessellation, space is divided into many non-
overlapping convex polyhedra, each of which contains one
matrix particle. We define the Voronoi vertices as the
points that are equidistant from the three nearest matrix
particles. Voronoi edges are lines that connect each vertex
to the three nearest vertices. A key aspect of our construc-
tion is the manner in which we distinguish between con-
nected and disconnected edges. Each edge has two nearest
matrix particles. If the distance between these particles is
less than o, + o4, we call this edge disconnected (be-
cause a solute particle cannot pass through), and we call the
edge connected otherwise. The static correlations between
matrix particles are therefore encoded in this passage
criterion for the connectivity of the Voronoi diagram.
Figure 2 depicts the Voronoi diagram for a matrix realiza-
tion with ¢,, = 0.2. The connectivity of the edges in this
case is shown for o, = ;. Two vertices or edges are in
the same cluster if there is a connected path between them.
Note that some clusters are isolated from the largest clus-
ter, which can be percolating. A solute particle placed on
this isolated cluster would be confined even if the system is
percolating.

The connectivity of the Voronoi graph can be charac-
terized by the fraction of connected edges, p, which is the
number of connected edges divided by total number of
edges. When either ¢, is increased for fixed o, or o is
increased for fixed ¢,,, p decreases, interestingly enough,
in a roughly linear fashion. This can be seen in Fig. 3,
which depicts p as a function of o for ¢, = 0.2 and p as
a function of ¢,, for oy = o,,. The inset shows the ex-
ponent « for the two cases. Figure 3 shows that changing
the solute size has the same qualitative effect on the
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FIG. 2. Voronoi diagram for a matrix realization for ¢,, = 0.2.
Circles represent matrix particles. Solid lines and dashed lines
are connected and disconnected edges, respectively, determined
using the passage criterion.

diffusion as changing the matrix area fraction. This is
surprising because the structure of the solute, in terms of
pair correlation functions, is quite different in the two
cases. If the exponent « is plotted against p, the curves
for the two models collapse onto a single curve within
uncertainties (see inset).

The percolation threshold is determined by examining
the mean cluster size, S(p, L), defined as S(p,L) =

©2, sP(s), where s is the number of edges in a finite
cluster and P(s) is the probability that an edge belongs to
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FIG. 3. Fraction of connected edges as a function of ¢,, for
oy = 0, (open symbols), and as a function of o for ¢, = 0.2
(solid symbols). The inset shows the corresponding value of the
exponent «.

a cluster containing s edges [19,25]. The summation ex-
cludes percolating clusters, if any. As p is increased,
S(p, L) initially increases, goes through a maximum at
the percolation threshold, and then decreases. As L is
increased, the height of this maximum increases and di-
verges in the thermodynamic limit. Figure 4 depicts
S(p, L) for different system sizes and two cases. The solid
symbols correspond to the model of this work where the
connectivity is determined using the passage criterion,
and with p varied by changing ¢,, for oy = o,,. The
percolation threshold occurs for p. = 0.53 which corre-
sponds to ¢,, = 0.22. (Interestingly, an identical percola-
tion threshold is obtained if p is varied by changing o for
¢, =0.2)

We compare the above results using the passage crite-
rion to those of a random lattice model where the Voronoi
vertices and edges are identical as above, but the connec-
tivity of edges is assigned randomly. For each Voronoi
diagram for ¢,, = 0.2, approximately a thousand random
configurations are generated for each value of p where a
fraction p of edges (chosen randomly) are assumed to be
connected. The open symbols in Fig. 4 represent this
model, i.e., where the edge connectivity is determined
randomly. In this case, the percolation threshold, p,, is
much higher: p, = 0.65, consistent with the exact result
p, = 2/3 [18,25]. The percolation thresholds for the pas-
sage criterion and random models, p. and p,, respectively,
are shown as dashed lines in Fig. 3. The spatial correlations
between matrix particles therefore play a very important
role in determining the percolation threshold of the system.

The simulations also reconcile two pictures for the
diffusion of proteins on membranes. Single molecule mea-
surements on protein diffusion [10] show that the behavior
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FIG. 4. Mean cluster size, S(p, L), as a function of p for
several system sizes. Solid and open symbols represent S(p, L)
for edge connectivities determined by the passage criterion (p is
varied by changing ¢,,) and for randomly connected edges,
respectively.
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is Brownian in all cases, while other experiments argue that
the proteins are confined in corrals and then jump from one
corral to the next [4]. The simulations show that these two
pictures are not inconsistent: we observe hopping at high
matrix area fractions (as has been observed for hard chains
in matrices composed of hard spheres [26]) even when the
long-time behavior is diffusive.

To connect with the CTRW model we calculate the
waiting time distribution, i.e., the distribution of times a
solute particle spends inside a Voronoi pore before moving
to another pore. The heterogeneous nature of the environ-
ment results in a broad distribution of waiting times, and
the distribution is nonmonotonic and decays in a roughly
power-law fashion for large times. The exponent character-
izing this decay is not related to the exponent @, which
suggests that this model cannot be represented in terms of a
CTRW.

In summary, we use Voronoi tessellation and percolation
theory to study the diffusion of hard discs in a matrix of
hard discs. The algorithm allows us to map the continuous-
space system to a lattice and use percolation theory to
study diffusion. A key aspect is that the connectivity of
the bonds in the lattice is obtained from a criterion related
to single particle dynamics, thus introducing local correla-
tions into the lattice model. As the matrix area fraction is
increased, the fraction of connected bonds decreases until
the lattice ceases to be percolating. This percolation thresh-
old is lower than that obtained by assigning bond connec-
tivity randomly. The qualitative behavior is similar if the
fraction of connected bonds is increased by changing the
matrix density or by changing the solute size.

The extension of this approach to more complex models
and phenomena is possible and promising. For example,
one can estimate the lifetime of a Brownian particle hop-
ping from one cavity to another to which it is connected by
a narrow channel [27], and with this approximation the
lattice model could be dressed with dynamic rules thus
allowing one to estimate the diffusion coefficient without
any simulations. Interactions between solute and matrix
can also be incorporated into the model. Finally, one can
envisage a lattice model where the matrix dynamics is
taken into account. In this case, the Voronoi diagram of
the matrix in terms of nodes and edges does not change, but
the connectivity between nodes changes as the matrix
particles move. One could mimic this by allowing some
of the bonds to fluctuate between connected and discon-
nected as a function of time with a frequency chosen to
mimic the model system. One could therefore map quite
realistic systems into ‘‘barrier-crossing’’ lattice models.

This material is based upon work supported by the
National Science Foundation under Grant No. CHE-
03152109.
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