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Phase-Field Crystals with Elastic Interactions
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We report on a novel extension of the recently introduced phase-field crystal (PFC) method [Elder et al.,
Phys. Rev. Lett. 88, 245701 (2002)], which incorporates elastic interactions as well as crystal plasticity
and diffusive dynamics. In our model, elastic interactions are mediated through wave modes that
propagate on time scales many orders of magnitude slower than atomic vibrations but still much faster
than diffusive time scales. This allows us to preserve the quintessential advantage of the PFC model: the
ability to simulate atomic-scale interactions and dynamics on time scales many orders of magnitude
longer than characteristic vibrational time scales. We demonstrate the two different modes of propagation
in our model and show that simulations of grain growth and elastoplastic deformation are consistent with
the microstructural properties of nanocrystals.
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FIG. 1. (a) Phase diagram indicating isothermal quench. The
diagram is symmetric around �0 � 0. (b) (top) Snapshot in
the evolution of polycrystalline solidification using the MPFC
model. Grain boundaries are highlighted in white. (b) (bot-
tom) Zoom-in of 4 crystal grains and their orientations.
The deformation of a solid triggers processes which
operate across several length and time scales. On long
length and time scales its behavior can be described by a
set of hydrodynamic equations [1,2], which describe, e.g.,
elastic deformation dynamics of the body. On atomic
length (�10�10 m) and time (�10�13 s) scales, on the other
hand, the dynamics can be captured by molecular dynam-
ics (MD) simulations, which incorporate local bonding
information either through direct quantum-mechanical cal-
culations or semiempirical many-body potentials. While
innovations in computing methods have greatly improved
the efficiency of MD simulations, standard atomistic com-
puter simulations are still limited to fairly small system
sizes (�109 atoms) and short times (�10�8 s). This limi-
tation is most severe when developing simulation models
to study the physics and mechanics of nanostructured
materials, where the relevant length scales are atomic
and time scales are mesoscopic. In this regime, the avail-
able numerical tools are rare.

Progress towards alleviating this limitation has recently
been made by the introduction of a new modeling para-
digm known as the phase-field crystal (PFC) method [3].
This method introduces a local atomic mass density field
��r� in which atomic vibrations have been integrated out
up to diffusive time scales. Dissipative dynamics are then
constructed to govern the temporal evolution of �.
Unfortunately, the original PFC model evolves mass den-
sity only on diffusive time scales. In particular, it does not
contain a mechanism for simulating elastic interactions, an
important aspect for studying, for example, the deforma-
tion properties of nanocrystalline solids.

In this Letter, we introduce a modified phase-field crys-
tal (MPFC) model that includes both diffusive dynamics
and elastic interactions. This is achieved by exploiting the
separation of time scales that exists between diffusive and
06=96(22)=225504(4) 22550
elastic relaxation processes in solids. In particular, the
MPFC model is constructed to transmit long wavelength
density fluctuations with wave modes that propagate up to
a time scale tw, after which the strain-relaxed density field
continues to evolve according to diffusive dynamics. The
key feature of our approach is that the value of tw can be
chosen to be much smaller than the characteristic time
scale of diffusion and still much larger than 1=!D �
10�13 s, where !D denotes the Debye frequency.

The phase-field crystal methodology begins by introduc-
ing an effective free-energy expanded to lowest order in the
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mass density ��r�:

F��;T� �
Z
��=2�r� �q0 �r

2�2��� �4=4�d2x: (1)

Here, r� �T � Tm�=LcP and Tm, L, and cP are, respec-
tively, the melting temperature, the latent heat of fusion,
and specific heat at constant pressure. Also, q0 � 2�=a,
where a is the equilibrium lattice spacing. This free energy
is identical to the one used in Ref. [3], and gives rise to a
phase diagram of coexisting liquid, solid, and striped
phases, as shown in Fig. 1(a). In the solid phase, � is
nonzero everywhere and spatially periodic on the atomic
scale with hexagonal symmetry in two spatial dimensions.
In the liquid phase, � takes on a constant value everywhere.
In the PFC formalism lattice sites are always occupied and
vacancy diffusion and topological defects are represented
via modulations of the local density amplitude and
wavelength.

In the original PFC model, the evolution of the mass
density is given by

@�=@t � �2r2��F��;T�=���; (2)

where � is a constant. A severe limitation of the PFC
model in Eq. (2) is that it only allows for diffusive density
relaxation. The model does not inherently contain a suit-
able separation of time scales between phase transforma-
tion kinetics and the much more rapid (‘‘instantaneous’’)
elastic relaxation. This precludes the study of phase trans-
formation phenomena in the presence of complex me-
chanical deformations [4]. As will be demonstrated
below, these serious shortcomings of the original PFC
model can be circumvented in a way that allows us to
preserve the quintessential advantage of the PFC model,
namely, the ability to simulate atomic-scale interactions
and dynamics on time scales many orders of magnitude
longer than molecular dynamics time scales. Most impor-
tantly, our modified model naturally incorporates ‘‘instan-
taneous’’ elastic interactions.

We begin by introducing a modified PFC (MPFC) equa-
tion given by

@2�

@t2
� �

@�
@t
� �2r2�; (3)

where � � �F��;T�=��, while � and � are phenomeno-
logical constants, which are related to the effective sound
speed and vacancy diffusion coefficient, as described be-
low. Equation (3) is of the form of a damped wave equa-
tion, containing two propagating density modes at early
time and one diffusive mode at late times. Specifically, the
fast dynamics of the MPFC model are governed by the first
term of Eq. (3), while the late time dynamics are governed
by Eq. (2). Although phenomenological, the form of the
equation can be argued as follows. Treating the system as a
continuum and combining the continuity equation
@�=@t � �r 	 ~g with the divergence of the momentum
conservation equation @gi=@t � �@�gigj=��=@xj �
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�@�=@xi yields @2�=@t2 � ri��ri�� �O�g2� (where re-
peated indices are summed over). By construction, this
equation conserves mass, and its linearized form (around
� � �0) supports propagating density wave solutions with

an effective sound speed c �
�����������������������������������
�0�@�=@��j���0

q
. We gen-

eralize this for a spatially periodic �, employ the approxi-
mation ri��ri�� 
 �2r2�, and incorporate dissipation
by adding a term �@�=@t [6].

To further elucidate the dynamics described by Eq. (3),
we performed a Floquet stability analysis. This was done
by assuming a perturbation in the density of the form �p �

�eq � ��, where �eq � �0 �
P
n;man;me

i ~Gn;m	 ~r, with �0 the

average density, ~Gn;m � nx̂� �n� 2m�=
���
3
p
ŷ the triangu-

lar reciprocal lattice vectors and an;m their corresponding
amplitudes. Here, �� �

P
n;mbn;m�t�e

i ~Gn;m	 ~r�i ~Q	 ~r, where ~Q
is a perturbation wave vector and bn;m�t� the perturbation
amplitude of mode (m; n). Substituting �p into Eq. (3) and
expanding to linear order gives an equation for bn;m. The
leading order mode satisfies b0;0 � ei!t with the disper-
sion relation !�Q� � i�=2���Q�=2, where ��Q� ����������������������������������������������������������������������������������������������������
��2� 4�2Q2�3�2

0� r��Q
2�q2

0�
2� 9=8A2

min�
q

. Here,
Amin denotes the amplitude of �eq within a single-
mode approximation [3,8]. Note that when
4�2Q2�3�2

0 � r � �Q2 � q2
0�

2 � 9=8A2
min� � �2, the

dispersion is approximately !�Q� 
 i�=2�

2�Q
���������������������������������������������������������������������
3�2

0 � r� �Q
2 � q2

0�
2 � 9=8A2

min

q

 i�=2� veffQ.

This dispersion describes a pair of density waves that
propagate undamped for time tw 
 2��1 and distance

�L�vefftw�4�
������������������������������������������������
3�2

0�r�q
4
o�9=8A2

min

q
=�, after which

they become effectively diffusive as in Ref. [3], with an
effective vacancy diffusion coefficient D � �2�3�2

0 � r�
q4
o � 9=8A2

min�=�. It is precisely these propagating modes
which mediate elastic interactions in the model. Details of
this calculation will be presented elsewhere [9].

This analysis demonstrates that Eq. (3) admits propagat-
ing solutions for density disturbances with a tunable elastic
interaction length �L. Let L� � max�Lx; Ly� denote the
largest dimension of the system under consideration and
� 
 �3�2

0 � r� q
4
o � 9=8A2

min�. Since D � �2�=�, �L 

4�

����
�
p

=�, and we require �L � 4D=��
����
�
p
� � L�, this im-

plies � � 4D=�L�
����
�
p
�. After choosing the appropriate

value for �, � is determined from � � �2�=D. For ex-
ample, to simulate a system with D 
 10�18 m2=s and
�L 
 10�7 m, one would choose � � 4� 10�11 m=s for
the effective sound speed and � � 1:6� 10�3 s�1.
Contrast this with MD simulations where �� 103 m=s.

We now turn to the treatment of the fully nonlinear
evolution of Eq. (3). The details of our numerical proce-
dures are as follows. All simulations were conducted on a
rectangular grid using periodic boundary conditions. Space
was measured in units of the lattice constant a, while the
grid size �x, time step �t, and coefficients �, � were
chosen according to the particular application. External
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loads were applied to the boundary of our system by using
a penalty function method. In this method, an additional

term, of the form P � M�x; y; t�
������������������������
��� �bdy�

2
q

, is added to

the free energy. This term couples the sample density � to
an imposed periodic density field �bdy. The support of �bdy

is the same as the support of the function M�x; y; t�> 0,
which defines the shape of the desired loading surface. The
form of P thus couples some portion of the sample’s
density (e.g., near the sample boundaries) to the imposed
boundary potential �bdy, which results in the sample’s
density field becoming slaved to the peaks of �bdy as
jM�x; y; t�j ! 1. As the applied potential field is trans-
lated, the sample’s density field, along the loading surfaces,
adiabatically follows the applied field. This specific form
of P also assures that our penalty function does not alter the
equilibrium phase diagram of the basic free-energy func-
tional F��;T� defined above.

We first simulated isothermal solidification using Eq. (3)
by preparing the system in the liquid state and subse-
quently setting the temperature below the coexistence
line in the phase diagram. To facilitate nucleation, several
nucleation sites were initiated in the metastable liquid
phase in the form of random (Gaussian) fluctuations.
During solidification, we found that the effect of the first
term in Eq. (3) was negligible, and the growth rates and
morphology were essentially indistinguishable from those
using Eq. (2). Figure 1 illustrates growth and impingement
of several nuclei in an undercooled melt. The simulation
was started with the liquid of average density �0 � 0:285
and dimensionless temperature r � �0:25; other parame-
ters were set to ��x;�t; �; �� � ��=8; 0:001; 15; 0:9�. The
measured grain boundary energies per unit length are con-
sistent with the usual Read-Shockley form [8,10].

To demonstrate the presence of elastic relaxation modes
in the MPFC model, we performed simulations of an
effectively one-dimensional single-crystal specimen
under uniaxial tension. The system was prepared in the
coexistence region as given by the phase diagram, and
the solid sample was surrounded by liquid. Model
parameters used were �r; �0;�x;�t; �; �� � ��0:4; 0:31;
FIG. 2. The displacements along a one-dimensional sample in
simple uniaxial tension at three different times (top). Linear
profiles are consistent with linear elasticity theory. Inset: a
tenfold increase in � leads to visco-elastic behavior.
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�=8; 0:001; 15; 0:9�. Taking a � 5 �A, this combination of
parameters implies that D 
 5� 10�17 m2=s and �L 

3:3� 10�8 m. When an atom at the boundary is displaced
by an amount D1 to the left, a tensile stress wave will
propagate to the right. When atomic oscillations stop, a
linear displacement distribution, D�x� � D1x=L, will be
established along the bar. Plots of displacement versus
position in the case of constant strain rate applied to the
boundary atom are shown in Fig. 2 at three different times.
Here, the displacements were extracted by a peak tracking
method, where the locations of local maxima in � were
tabulated after each time step. The data clearly show that
the response of the system is consistent with elasticity
theory.

To make contact with the previous PFC formulation in
Eq. (2) [8], we repeated the same simulations with a
tenfold increase in the damping parameter � � 9, which
corresponds to D 
 5� 10�18 m2=s and �L 
 3:3�
10�9 m. The computed displacements, plotted in the inset
of Fig. 2, show that the response becomes visco-elastic as
damping is increased. Therefore, Eq. (2) alone does not
adequately describe elastic responses in strained crystals
at finite strain rates, while Eq. (3) naturally incorporates
such phenomena. Indeed, this feature of our approach
opens a new computational window into studies of com-
plex geometries, nonuniform stresses, and high strain rates
[11–13].

We also examined the dynamics of individual disloca-
tions. The setup for these simulations is shown in Fig. 3.
Specifically, the top part of the crystal initially contains N
atoms and the bottom part N � 1. After the sample equili-
brated an edge dislocation formed and a constant shear
strain rate was applied. The time-averaged dislocation
glide velocity �v was found to be a linear function of the
strain rate _�, consistent with classical dislocation theory.
This theory predicts that �v � _�=��db�, where �d is the
dislocation density and b is the magnitude of the Burger’s
vector [14].

To elucidate the local dynamics of individual disloca-
tions, we computed the average strain in the crystal as a
FIG. 3. A portion of the sample used to examine dislocation
glide velocity. Parameters used: �r; �0;�x;�t; �; �� �
��1; 0:49; �=4; 0:001; 15; 0:9�.
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FIG. 4. Two regimes of dislocation glide. For high strain rates
we observed continuous glide, while at lower strain rate the
dislocation set into a stick-slip motion. Inset: dislocation glide
velocity vs applied strain rate.
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function of time for different strain rates. These results,
shown in Fig. 4, revealed two regimes of dislocation glide.
The first was characterized by continuous glide (observed
at large _�) and the second by a stick-slip gliding of the
dislocation at low _�. In both cases the applied plastic strain
was relieved by the motion of the dislocation, and the time-
averaged strain remained constant.

To further illustrate the properties of our MPFC model,
the effect of uniaxial tension in a notched sample was
examined. Figure 5 shows that strain in a notched sample
appropriately concentrates near the notches, as expected
from linear elasticity theory. In particular, treating the case
of a double notched plate the stress concentration for this
geometry is Kt � �max

yy =�0
yy � 1:8 [15], which is in ex-

cellent agreement with our simulation result 1.81. It is
FIG. 5 (color online). Strain concentration in a double notched
sample under a uniaxial tension. Left: a strain map of the center
portion of the sample displayed at the bottom. Boundary atoms
are highlighted in black. Right: plot represents a strain profile
from the center of the sample into the root of the notch. The solid
line is a guide to the eye.
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noteworthy that a simulation with the PFC model
[Eq. (2)] for the same system and using an affine trans-
formation to approximate the strains in the sample failed to
produce the expected strain concentration. We also note
that while the strains can be extracted in a straightforward
manner, elastic stresses are currently obtained only within
linear elasticity, as the nonlinear elastic properties of the
PFC model have not been fully explored. This should be
contrasted with MD, where the stresses in the crystal can
be determined from, e.g., the virial theorem, even in the
nonlinear elastic regime.

In conclusion, we have introduced a novel phase-field
crystal model (MPFC), which extends the previous phase-
field crystal formalism by generating dynamics on two
time scales. Atomic positions are relaxed rapidly at early
times in a manner consistent with elasticity theory, while
late time dynamics are governed by diffusive dynamics
characteristic of phase transformation kinetics, vacancy
diffusion, grain boundary kinetics, and dislocation climb.
It is expected that the MPFC model will help open a new
window into the study of phase transformation kinetics and
microstructure heterogeneity in high strain rate loading of
nanocrystalline solids.
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