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Do Binary Hard Disks Exhibit an Ideal Glass Transition?
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We demonstrate that there is no ideal glass transition in a binary hard-disk mixture by explicitly
constructing an exponential number of jammed packings with densities spanning the spectrum from the
accepted amorphous glassy state to the phase-separated crystal. Thus the configurational entropy cannot
be zero for an ideal amorphous glass, presumed distinct from the crystal in numerous theoretical and
numerical estimates in the literature. This objection parallels our previous critique of the idea that there is
a most-dense random (close) packing for hard spheres [Torquato et al., Phys. Rev. Lett. 84, 2064 (2000)].
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Understanding the glass transition in dense or super-
cooled liquids remains one of the challenges of condensed
matter physics. Considerable effort has been directed at
identifying the cause of the dramatic slowdown of the
dynamics in the vicinity of the kinetic glass transition, as
evidenced in a decrease of the diffusion coefficient and an
increase in relaxation times. One possibility is that a ther-
modynamic transition different from the usual liquid-solid
transition underlies the kinetic one. A scenario originally
suggested by Adam and Gibbs [1] relates the slow diffu-
sion to a vanishing of the number of alternative configura-
tions available to the liquid, leading to an ideal
thermodynamic glass transition when the liquid has no
choice but to remain trapped in one of few glassy configu-
rations. An important basic assumption in these consider-
ations is that crystalline configurations, which are
thermodynamically favored, are kinetically inaccessible
and therefore the liquid is restricted to exploring ‘“‘amor-
phous” configurations. The terms “amorphous” and
“glass" have erroneously become synonymous with one
another, and crystalline configurations have been assumed
to be qualitatively different from glassy ones. In this Letter,
we study a specific model glass former, namely, a binary
hard-disk mixture, and show that, for this model, the
presumed “‘ideal glass” is in fact a phase-separated crystal,
and that there is no special amorphous (random) state, but
rather a continuum of states from the most disordered one
to the most ordered one [2].

An inherent-structure formalism was proposed by
Stillinger and Weber and has since been used extensively
in the analysis of the thermodynamics of supercooled
liquids [3]. The “inherent structures’ of hard-particle sys-
tems are in fact (collectively) jammed packings [4], which
are mechanically stable packings where the particles are
trapped in a static configuration despite thermal or external
agitation. For soft-particle systems, an essential quantity in
this thermodynamic analysis is the number of distinct
energy minima (basins) with a given energy per particle.
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For hard-particle systems this becomes the number of
distinct jammed packings N,(¢;) = exp[Ns.(¢;)] with
jamming packing fraction (density) ¢;, where s.(¢;) is
the configurational entropy (degeneracy) per particle. It is
assumed that the liquid remains in the vicinity of these
basins for long periods of time, jumping from one basin to
another as it explores the available configuration space.
Denser packings are favored in terms of their free volume,
the most favored one being the crystal of density ¢ .x-
However, it is reasonable to assume that the degeneracy
sc(¢;) decreases with increasing ¢ ;. The liquid achieves
minimum free energy by trading off degeneracy for free
volume, so that at a given density ¢ it predominantly
samples glasses with jamming density & (). The conjec-
tured ideal glass state corresponds to the point where the
number of available basins becomes subexponential, that
is, sc(qSIJG = 0. At densities above an ideal glass-transition
density ¢y, defined via ¢,(pig) = ¢'C, the liquid be-
comes permanently trapped in the ideal glass state. A
crucial unquestioned assumption has been that ¢! <
®max» 1.€., that there is a gap in the density of jammed
states between the amorphous and crystal ones. We will
explicitly show that this assumption is flawed for the binary
hard-disk mixture we study, and suggest that this is the case
in other similar models, contrary to numerous estimates for
¢'F in the literature [5-7].

Previous simulations have cast doubt on the existence of
ideal glass transitions in hard-particle systems [8,9]. It has
already been suggested that the slope of s.(¢;) at ¢'©
dramatically affects the location of the presumed transi-
tion; an infinite slope shifts the transition to zero tempera-
ture [10]. The validity of extrapolations into temperature or
density regions that are inaccessible to accurate computer
simulations [11], as well as the impact of finite-size effects
[12], have been questioned. In this Letter, we present clear
evidence that the concept of an ideal glass transition is
flawed for distinctly different reasons. Specifically, for our

© 2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.96.225502

PRL 96, 225502 (2006)

PHYSICAL REVIEW LETTERS

week ending
9 JUNE 2006

model, we explicitly construct an exponential number of
jammed packings with ¢; span from the accepted amor-
phous state with ¢35 = 0.84 to that of the crystal,
Dmax = /12 = 0.91, thus clearly showing that the con-
figurational entropy cannot be zero for the hypothetical
most-dense amorphous (ideal) glass distinct from the crys-
tal. This objection is in the same spirit as the critique of the
concept of random close packing (RCP) raised by one of us
in Ref. [2], namely, that there is a continuous tradeoff
between disorder (closely linked to degeneracy) and den-
sity, making the definition of a most-dense random packing
ill defined. Instead, Ref. [2] replaces RCP with the maxi-
mally random jammed (MRJ) state, i.e., the most disor-
dered of all jammed states.

Here we study a binary mixture of disks with a third
(composition xz = 1/3) of the disks having a diameter
x = 1.4 times larger than the remaining two thirds (x4, =
2/3). Bidisperse disk packings with this aspect ratio and
x4 = xp = 1/2 have been studied as model glass formers
[13]. For this «, it is believed that the high-density phase is
a phase-separated crystal. Our free-energy calculations
predict that at the freezing density ¢ = 0.775, a crystal
of predominantly large particles should start precipitating
from the liquid mixture, i.e., systems in true thermody-
namic equilibrium should crystallize just like the equiva-
lent monodisperse system. Nucleation is, however,
kinetically strongly suppressed due to the need for large-
scale diffusion of large disks toward the nucleus [9], and in
fact, we have not observed crystallization even in simula-
tions lasting tens of millions of collisions per particle well
above the estimated freezing density.

The quantity N,(¢b,) has recently been estimated via
explicit enumeration for binary mixtures of relatively small
numbers of hard disks [14]. These studies have observed an
approximately Gaussian N,(¢,) [corresponding to an in-
verted parabola for s.(¢;) [5]] that is peaked at a density
dmry = 0.842, interpreted to correspond to the MRIJ state
for this system. For large systems, such enumeration is not
yet possible and thermodynamics has been used to obtain
estimates of s.(¢;), namely, it is estimated as the differ-
ence between the entropy (per particle) of the liquid s, (¢)
and the entropy of the “glass” s,(¢), s.[¢,(¢)]=
s.(¢) —s,(¢). Here s, is obtained via thermodynamic
integration of the equilibrium liquid equation of state
(EOS) from the ideal gas limit, while s, is defined as the
entropy of the system constrained to vibrate around a
single basin with jamming density ¢, without the possi-
bility of particle rearrangements. There is significant am-
biguity in defining these constraints; however, at least in
the truly glassy region, the system is typically spontane-
ously constrained (jammed) by virtue of a very slow
rearrangement dynamics, so that s, can be defined reason-
ably precisely.

We have calculated s,(¢) using a collision-driven mo-
lecular dynamics (MD) algorithm that will be described in
detail in a future publication [15]. For hard disks, it is very

similar to the tether method of Speedy [5]. The particles
are restricted to remain in the vicinity of their initial
configuration via hardwall cells twice as large as the par-
ticle itself, which allows particle vibrations but restricts
particle rearrangements. The cells then shrink in size
slowly during the course of the MD run, and at the end
they become disjoint, leading to a noninteracting system of
particles with analytically known free energy. The work
done to shrink the cells then gives the initial entropy of the
glass. Closely related methods have previously been used
to calculate configurational entropy [5,6], with similar,
though less accurate, results. For soft-particle glasses, an
alternative method is to use the harmonic approximation to
the vibrational entropy at an energy minimum as an esti-
mate of s, [7]. Both methods are rigorous only in the high-
density (jamming) or 7 — 0 limit, so the quantitative
results at low ¢ should be interpreted with caution.

The calculation of the true equilibrium liquid is not
possible inside the glassy region with conventional simu-
lation methods, especially for large system sizes
[11,12,16]. In our MD algorithm, we produce glasses by
starting with a low-density liquid and growing the particle
diameters at a growth rate y = dD/dt < 1 [4], for a very
wide range of compression rates . Instead of looking
directly at the reduced pressure p = PV/NkT, we assume
that a free-volume EOS [4] holds approximately and esti-
mate the jamming density dA) ;(¢) from the instantaneous
pressure ¢; = ¢/[1 —2/p(¢)]. In the jamming limit
(p — o), we getthat ¢, = ¢ = ¢, and close to jamming
¢, = ¢, and thus it is much more useful to plot ¢ ;(¢)
instead of p(¢). This is evident in Fig. 1, where we show
q~5 7(@) for arange of y’s. We see that fast compressions fall
out of equilibrium at lower kinetic glass-transition den-
sities ¢,, and that the nonequilibrium glassy EOS is very
well described by an empirical ¢;=(1+a)d, — ad,
where a=0.133, over a wide range of ¢ > ¢,. It is also
clear that even for the slowest compressions ¢, =~ 0.8, so
that equilibrating the liquid in reasonable time is not
possible beyond this “kinetic glass-transition” density.
As many as 50 X 10° collisions per particle have failed
to equilibrate a wide class of microstructures at a fixed
¢ =0.8.

The final jamming densities of the glasses compressed at
different rates are shown in Fig. 2. Note that slower com-
pressions consistently yield denser packings with no hints
of the existence of a densest glass. For systems of soft
particles, the energy of the lowest inherent-structure
sampled has similarly been shown to continuously de-
crease for slower cooling [3]. Fast compressions produce
packings that are not truly jammed [4] and subsequent
relaxation of these systems increases the density to around
¢; = 0.847. This behavior of our hard-disk systems is
closely related to the observation that supercooled liquids
sample saddle points with the saddle index diminishing
only below the temperature where even the slowest cooling
schedules fall out of equilibrium [17].
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FIG. 1 (color online). The equation of state ¢,(¢p) for N =
4096 disks as observed by compressing a liquid with different
expansion rates y (see legend).

The measured s.(¢) for the different glass compressions
are shown in Fig. 3. For comparison, the results for a slow
compression of a monodisperse system are also shown and
the entropy of mixing s;, = x4 Inx, + xpInxp has been
subtracted from s.. It is seen that for the monodisperse
case, S, — Smix (Smix = 0 in this case) becomes very nearly
zero after the liquid freezes (around ¢ =~ 0.7), indicating a
continuous or a very mildly discontinuous liquid-solid
phase transition. More interesting is the fact that s, —
Smix also becomes nearly zero for the binary glasses around
the kinetic phase transition (¢ = 0.8). This important ob-
servation has not been made before. It is interesting to
observe that the parabolic fit to s.(¢,) from the work in
Ref. [14], if constrained to equal the mixing entropy at the
maximum, passes through zero at ¢ = 0.9, much higher
than the extrapolation in [5] and close to the crystal jam-
ming density. We note that all measurements of s, in the
literature that we are aware of are above or close to s, near
the kinetic glass transition, and all estimates of the zero
crossing of s are based on extrapolations beyond this point
without numerical support [5-7].

Such extrapolations are flawed and, in fact, an exponen-
tial number of amorphous jammed packings exist over the
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FIG. 2 (color online). Final jamming density ¢, for different
compression rates y, with and without additional relaxation to
ensure a truly jammed packing has been reached.
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FIG. 3 (color online). Estimated s.(¢) — sy, for monodis-
perse and bidisperse systems of N = 4096 disks, as obtained
from (sufficiently slow) compressions with a range of y’s.

whole density range from that accepted as the MRJ density
dmry = 0.84 [5,14] to that of the phase-separated crystal
G max = 0.91. Lower-density jammed packings also exist
[14]; however, they do not have thermodynamic signifi-
cance and thus our simulations do not generate them. In our
simulations we observe that higher ¢; implies microseg-
regation in the form of increased clustering of the large
particles. This has been most vividly demonstrated in
Ref. [13]. This observation suggests that one can generate
denser packings by artificially encouraging clustering.

To achieve clustering, we start from a monodisperse
(k = 1) triangular crystal at pressure p = 100 in which a
third of the particles has been selected as being ‘“‘large.”
The large particles then slowly grow in diameter while the
system is kept in (quasi)equilibrium at a constant (iso-
tropic) pressure using a Parinello-Rahman-like variation
of the MD algorithm [15]. When « = 1.4 we stop the
process and then slowly compress the system to jamming.
By spatially biasing the initial partitioning into large and
small disks, we can achieve a desired level of clustering
and higher jamming densities. For this purpose we use a
level cut of a Gaussian random field (GRF) with suitably
chosen parameters for a flexible family of pair correlation
functions [18]. Figure 4 illustrates two different jammed
packings, one with an uncorrelated random choice of

(a) (b)

FIG. 4 (color online). The microstructures of two packings:
(a) without (¢; = 0.846) and (b) with moderate clustering
(¢, = 0.850).
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FIG. 5 (color online). The measured degeneracy of packings of
N = 4096 disks obtained by using different parameters of a ran-
dom Gaussian field with Matern correlations [18], as a function
of the jamming density. For comparison, we have shown s.(¢p =
0.825) for the three compressions shown in Fig. 3.

large disks, and another with correlations encouraging
microsegregation.

To determine the configurational entropy (degeneracy)
for a given choice of the GRF parameters, we use a recently
developed algorithm for obtaining numerical approxima-
tions of the entropy (per site) of lattice systems [19]. The
algorithm numerically measures the probabilities of ob-
serving a given configuration, which in our case is the
partitioning of the triangular lattice into large and small
disks, for small windows (we have used 4 X 4 windows).
This can be done by generating sufficiently many GRF
realizations and counting the number of times a given
configuration occurs. A Markov expansion is then used
to approximate the entropy per site s,.. Figure 5 shows our
results for s, versus the jamming density ¢, for a wide
choice of the GRF parameters. The results clearly show
that in order to increase ¢; one must sacrifice degeneracy
(s.). The figure also shows the first measured, rather than
extrapolated, estimate of s.(¢;). This observed s.(¢;)
only goes to zero for the phase-separated crystal state,
rather than the hypothetical amorphous ideal glass state
postulated by extrapolations.

Continuing on work in Ref. [2], we explicitly demon-
strated that the concept of random close packing as the
most-dense jammed amorphous packing is flawed. By
trading off degeneracy for density in a continuous manner,
we constructed an exponential number of amorphous
jammed packings with densities spanning the range from
the most disordered to most ordered jammed states. For the
maximally random jammed state, we found a degeneracy
entropy very close to the mixing entropy. We explicitly
calculated, as opposed to extrapolated, the degeneracy
entropy for densities well above that of the postulated ideal
glass transition, and found that the degeneracy is positive
for all amorphous states and vanishes only for the phase-
separated crystal. It should be noted that our argument has
nothing to do with trivially mixing macroscopic liquid and

crystal domains in order to get mixed states of intermediate
densities; such a construction severely underestimates the
number of available jamming configurations. Furthermore,
our free-energy calculations predict a thermodynamic
crystallization well below the kinetic glass transition, cast-
ing additional doubt on the search for a thermodynamic
origin of the glass transition. Although the present study
focused on the hard-disk binary mixture, the fundamental
principles are general enough to be applicable to a host of
related systems, notably, both mono- and bidisperse sys-
tems with hard-core and soft interactions.
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