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High harmonic generation (HHG) in many-electron atoms is studied theoretically. The breakdown of
the frozen-core single active electron approximation is demonstrated, as it predicts roughly the same
radiation amplitude in all noble gases. This is in contradiction with experiments, where heavier noble
gases are known to emit much stronger HHG radiation than lighter ones. This experimental behavior of
the noble gases can be qualitatively reproduced when many-electron dynamics, within a simple

approximation, is taken into account.
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The first high harmonic generation (HHG) experiment
was reported in 1987 [1]: gas atoms placed in an intense
laser field were observed to emit coherent radiation in
high-order harmonics of the laser frequency. Theoretical
studies of the phenomenon followed shortly [2-8].
Common to the vast majority of the theories is the single
active electron (SAE) approximation. References [2,5,7]
represent frozen-core Hartree-Fock approaches. Numerical
studies with one-dimensional model potentials [3] and
analytical studies with a delta-function potential [4] belong
to the same category. The widely accepted three-step
model (TSM) [6] is another example of a SAE theory.

The SAE approximation is often motivated by the fact
that in many HHG experimental situations predominantly
only one electron is ionized during the process. However,
this does not necessarily mean that the dynamics of the
other electrons plays no role. In fact, the SAE approxima-
tion has no real justification in the HHG literature. Studies
of HHG that go beyond the SAE approximation [8] are
scarce due to the complexity of the problem.

SAE descriptions of HHG, often approximated by the
TSM, have been successful explaining various features of
HHG. Examples are the spectral cutoff formula [6], the
phase structure of the spectrum [9], and the prediction [10]
of attosecond pulses, which were later demonstrated and
characterized [11]. However, there is one extremely promi-
nent feature in HHG which, to the best of our knowledge,
remains unexplained: the scaling of the HHG radiation
intensity with the atomic number.

It seems to be common knowledge among HHG exper-
imentalists that heavier noble gases emit stronger HHG
radiation than lighter ones [12], the differences reaching a
few orders of magnitude. Even though this behavior can be
in part due to propagation effects, it is likely that there is a
major contribution due to the single-atom response, since
the behavior was sustained even in quasi-phase-matched
experiments [13], and absorption generally becomes only
stronger in heavier noble gases.
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This behavior of the noble gases has been theoretically
addressed in only a few studies. An example is Ref. [5],
which employs an effective-potential SAE approach.
Heavier noble gases are found to have stronger HHG
intensities when placed in the same laser field. However,
this effect can be attributed to the difference in ionization
potentials. In contrast, experimentally the effect is ob-
served even when the laser field intensity is matched to
the medium to reach similar ionization rates [12], thus
eliminating effects due to the differences in the latter.

The main conclusion of this Letter connects the question
of the validity of the SAE approximation with the experi-
mentally observed higher HHG intensities in heavier noble
gases: first, we show that the SAE approximation predicts
similar HHG emission in all noble gases. Hence, we may
conclude that many-electron effects must be taken into
account in the description of HHG. Second, we make a
first attempt to provide a description of HHG that includes,
within a simple approximation, many-electron effects and
qualitatively reproduces the experimental trend mentioned
above.

Let H, be the Hamiltonian of a many-electron atom with
the atomic number Z (atomic units are adopted throughout
the Letter):
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The atom is placed in a linearly polarized laser field. The
field is denoted by E(r) and the direction of polarization is
chosen to be x. The time-dependent Hamiltonian of the
system is given by

zZ
H(f) = Hy — E(1) Z X;. (2)
j=1

The amplitude of the HHG radiation can be found by
computing the expectation value of the dipole moment
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and then treating (x) as a classical dipole source. |¥(?)) is
the time-dependent wave function of the many-electron
atom, which solves the time-dependent Schrodinger equa-
tion i|W(r)) = H®)|W(7)).

Finding |W(¢)) exactly is impossible, and an approxima-
tion is required. We assume, as explained in the introduc-
tion, that only one (the ““active”) electron is ionized during
the HHG process and the others remain bound. At this
point it is common [2-5] to adopt an effective-potential
model, where the Hamiltonian of the active electron is
written as
p>
5 + V. (€))
V is the effective potential, which may be a central-field
potential such as the Hartree-Slater potential [14]. [See,
e.g., Ref. [5] for other possible choices.] The state vector
li4(1)) of the active electron then satisfies

il§(0)) = HOlp(1), )

and the time-dependent expectation value of the dipole
moment is given by

(x) = (P(O)lxlg(2)). (6)

Central to this model is the fact that all electrons apart from
one are kept frozen, and that the contribution of only one
electron to the emitted radiation is calculated.

We argue that the model defined by Egs. (4)—(6) typi-
cally gives similar HHG intensities for all noble gases for
common experimental parameters [12]. |¢(7)) may be
written as a superposition of the most weakly bound orbital
|y occupied in the ground state and the orbital |y(7))
describing the excited electron (| x(¢)) is a superposition of
eigenstates of H, that are energetically higher than |¢)).
Then it follows from Eq. (6) that the HHG emission is
determined by the dipole matrix element between | @) and
| x(2)), times {¢y|i(2)). The valence orbitals of all noble
gases are of similar size. In matched field amplitude (MFA)
conditions, that is, if the laser field amplitude is matched to
each noble gas such that the respective Stark ionization
rates are similar, the corresponding | x(#)) (and {(@y|i(2)))
are similar as well. This is true at least for momenta rele-
vant to contemporary HHG experiments, which can hardly
resolve the atomic core. One therefore expects that the
model defined by Egs. (4)—(6) does not account for
orders-of-magnitude differences observed in experiments.

In order to substantiate the conclusions of the above
discussion, we adopt a particular effective potential,
namely, the Hartree-Slater [14] potential Vyg(r). With
this potential, the binding energies and photoionization
cross sections of the noble gases can be fairly well repro-
duced [15].

H(t) = H, — xE(1), H,

In the limit of a small Keldysh parameter, the HHG
spectra obtained from the model described by Eqgs. (4)—
(6) are well approximated by the TSM [16,17]. For MFA,
the amplitude of the HHG spectrum is determined by the
TSM recombination amplitude. The latter is best evaluated
in the acceleration form [16], and is given by (¢q| —
d,VIk), where |k) is a momentum eigenstate. Since |¢@g)
is technically an excited eigenstate of the Hamiltonian H
(excluding helium), the lower-lying eigenstates are kept
unpopulated during the evolution, and the TSM is im-
proved when the lower-lying states are projected out of
|k) [17]. This leads to a recombination amplitude given by

arec(k) = _<¢0|axvlk> + z<¢0|axvl¢]><§0]|k> (7)
J

The sum runs over all eigenstates |¢ ;) of Hy lying ener-
getically below |¢).

are.(k) for the five lightest noble gases is displayed in
Fig. 1. One can see that in the energy range where HHG
experiments are done, a,..(Kk) is of very similar magnitude
for all noble gases. Therefore, for MFA, the model defined
by Egs. (4)—(6) gives similar spectral intensity in all noble
gases. This statement is verified by extensive direct nu-
merical calculations with Egs. (4)—(6), which will appear
elsewhere [18].

The finding that SAE models of the type defined by
Egs. (4)—(6) are orders of magnitude away from describing
the scaling of the HHG intensity with the atomic number
suggests that many-electron effects can play a crucial role
in the HHG process. In what follows, we attempt to con-
struct a model of HHG which goes beyond the standard
SAE approximation and takes into account, within an
approximation, the dynamics of many electrons during
the HHG process.

If for the moment we ignore spin, which is taken into
account later on, the single-electron wave function [#) in
Eq. (5) can be given the meaning of being a part of an
approximate many-electron wave function of the Hartree
form
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FIG. 1 (color online).
gases.

arec(ky) [Eq. (7)] for different noble
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W(ry,...,rz50) = @(r) @z 1(rz_)p(rz ).  (8)

The potential V in Eq. (4) then represents the electrostatic
potential generated by the Z — 1 inner electrons, whose
wave functions are frozen in time. Equation (3) then turns
into Eq. (6).

However, one can use the wave function (8) differently:
one can compute the second time derivative of Eq. (3)

employing the Ehrenfest theorem with the exact
Hamiltonian (2). The result is
Z ..
() = —Z(WO| > =% |P@) + ZE(). ©)
=T

Note that the electron-electron interaction term does not
contribute.

If ¥ is the exact solution of the many-electron time-
dependent Schrodinger equation, evaluating Eq. (9) gives
the same result as differentiating Eq. (3) twice in time.
However, for the approximate wave function (8) the results
will be different. Using Eq. (8), Eq. (9) becomes

(&) = = Z(w()] 5 lw(0), (10)

where the last term [ZE(7)] in Eq. (9) has been dropped, as
it does not contribute to the HHG spectrum. Because of the
Z prefactor in Eq. (10), even if ¢ is now obtained solving
Eq. (5), it is now not surprising to obtain enhanced HHG
emission for heavier noble gases compared to lighter ones.

In what follows, we study the HHG spectra produced
with Eq. (10) and show that they reproduce the experimen-
tal behavior of the noble gases much better than Egs. (4)—
(6). However, before we proceed, we discuss why it is that
Eq. (10) is more suitable than Eq. (6) for describing HHG
in many-electron atoms.

First, if we had to select between an approximation for
(x) and an approximation for (i), for calculating HHG the
latter would be the natural choice. This is because the high
frequency composition is much more pronounced in (X)
than in {x). For a |¢) that satisfies Eq. (5), differentiating
Eq. (6) twice gives (| — 9, V|i) rather than Eq. (10)
[omitting E(z) again]. While Egs. (10) and (6) are evaluated
with the same approximate wave function, only the dipole
acceleration operator in Eq. (10) is exact, as it is obtained
from the exact Hamiltonian (1).

The second argument in favor of Eq. (10) is based on the
TSM. We begin with a classical argument. According to
the TSM, an electron is pulled out of the atom by the laser
field, accelerated by it, and after the field reverses its
direction the electron recollides with the parent ion. The
radiation is emitted due to the acceleration of the electron
in the field of the cation (i.e., the nucleus of charge Z
screened by Z — 1 electrons of charge unity). Consider
now a bound electron in its equilibrium position that repels
the recolliding electron, screening thereby part of the
nuclear charge. Exactly the same force is exerted by the

recolliding electron on the bound one, causing the same
acceleration and thus additional radiation in the same
amount. The emitted radiation is thus enhanced by Z, as
if one electron were moving in the potential of an
unscreened nucleus. Said differently, the total body of
charge composed of all electrons accelerates under the
influence of the “‘external”” nuclear force only. The internal
electron-electron forces cancel out. This is why the
electron-electron repulsion term is absent in Eq. (10).

Although this is a classical and rather simplistic picture,
it is supported by quantum-mechanical many-body calcu-
lations of electron-ion collision processes. The emission
due to the polarization of the target ion in response to the
collision has been calculated in the context of bremsstrah-
lung [19,20] and recently in the context of recombination
[21]. This mechanism has been termed *‘polarizational
recombination’ [21]. It was shown that the radiation emit-
ted by all electrons can be approximately obtained by
calculating the radiation from the recolliding electron
only, but as if it were moving in a (usually not fully)
descreened nuclear potential. On the other hand, using
Eq. (6) is exactly equivalent to computing the acceleration
in the fully screened potential V.

In order to illustrate the enhancement in the HHG emis-
sion in heavier noble gases obtained when Eq. (10) is used,
we have computed HHG spectra for the four lightest noble
gases with MFA. The many-electron wave function we
construct goes one step beyond Eq. (8), taking spin into
account. The equation of motion for the spatial orbital of
the active electron is then systematically derived by a time-
dependent configuration interaction singles (TDCIS)
method, where the time-dependent wave function is re-
stricted to spin-singlet conserving single-particle excita-
tions of the ground-state determinant. A detailed derivation
and discussion of this method will be given elsewhere [18],
where it is also demonstrated that the TDCIS method better
agrees with full many-body calculations than SAE calcu-
lations of the type defined by Eqgs. (4)—(6). Here we only
give a brief description of the method.

Our starting point is the expansion of | W (7)) in terms of
Slater determinants constructed from one-particle orbitals
l@;) of a given one-particle Hamiltonian (H, with V =
Vus in this work). The initial state is the ground state,
which is approximated by a single determinant. The ex-
pansion of |W(z)) is restricted to single-particle excitations
from the occupied orbitals. Here, we consider only excita-
tions from the highest occupied p, (1s in He) orbital |¢,).
All other occupied orbitals are frozen. In contrast to other
existing approaches, excitations preserve the spin-singlet
symmetry of the system. TDCIS can be recast as an effec-
tive single-electron approach. Approximating H(r)
[Eq. (2)] by H(t) [Eq. (4)] leads to the effective one-
particle equation

ilg(0) = Hilp(1)) = E@)(1 — P+ 2Po)xlip()).  (11)
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FIG. 2 (color online). HHG spectra in MFA conditions (E, =

0.29, 0.245, 0.125, 0.1 a.u. for He, Ne, Ar, and Kr, respectively)
computed numerically using the TDCIS method.

The initial condition is |#(0)) = | @), Py = @)X ¢yl, and
P =Y lo;X¢;l, where the sum goes over all occupied
orbitals of the ground-state determinant. Note that the
evolution of the orbital |i/(¢)) is nonunitary. The norm of
the many-body wave function constructed from |[¢(z)),
however, is conserved. Expectation values of one-particle
operators D can be expressed by means of the orbital
|p(0)): (P DIDIW(0)) = 2((1)| Dlyp(1)).

Figure 2 shows HHG spectra for MFA obtained numeri-
cally from the TDCIS method, with D= —Zx/ r as in
Eq. (10). The field amplitudes are given in the caption, and
achieve equal static Stark ionization rates in all gases
within 4%. The Stark ionization rates were calculated
numerically from Vyg for each noble gas, using a suitably
adapted version of the technique described in Ref. [22].

The general trend of stronger HHG yield in MFA con-
ditions for heavier noble gases is clearly reproduced in
Fig. 2. Yet, the results in Fig. 2 should not be interpreted as
a quantitative prediction: they only indicate a trend. The
calculations involve approximations and their validity
needs further investigation. In particular, the role of elec-
tron correlation remains open.

In this work we have shown that frozen-core SAE mod-
els give similar HHG emission rates in all noble gases,
which seems to significantly contradict the experiments.
We have proposed a new approximation, which clearly
goes beyond a frozen-core SAE model, and qualitatively
agrees with experiments. The results are strongly sugges-
tive of a crucial role that many-electron dynamics plays in
determining the HHG emission rates in many-electron
atoms.
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