
PRL 96, 223901 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
9 JUNE 2006
Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies
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We show analytically and numerically that diamagnetic response (effective magnetic permeability
�e < 1) at infrared and visible frequencies can be achieved in photonic crystals composed of metallic
nanowires or nanospheres when the wavelength � is much larger than the lattice constant a (�� 2000a).
When �� 100a, the metallic photonic crystals will exhibit strong diamagnetic response (�e < 0:8),
leading to many interesting phenomena such as the unusual Brewster angle for s waves and incident-
angle-and-polarization-independent reflection and transmission.
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FIG. 1 (color online). (a) A 2D (3D) PC composed of cylinders
(spheres) of �"1; �1� in the matrix of �";��, and (b) a coated
cylinder (sphere) in the effective medium of �"e; �e�.
Photonic crystals (PCs) [1], or periodic composite me-
dia, have received great interest due to their unique elec-
tromagnetic (EM) properties. A famous example is the
photonic band gaps (frequency ranges in which wave
propagations are forbidden) which can be utilized to local-
ize and guide light in a unique way [1,2]. Recently, the low-
frequency range much below the first band gap has also
attracted growing attention [3–6] due to the occurrence of
PCs composed of (carbon) nanotubes [7] or (metallic [8]
and semiconductor [9]) nanowires. In the long-wavelength
limit (wavelength � much larger than the lattice constant
a), these PCs can be viewed as homogenous media de-
scribed by an effective dielectric constant "e and an effec-
tive magnetic permeability �e [10]. Because of the diver-
sity of microstructures and dielectric constant, "e of PCs
can be tailored to be of strong anisotropy and of diverse
values, resulting in many interesting phenomena that are
difficult to be realized in natural crystals, e.g., Dyakonov
surface waves [5] and ultraslow guided modes [6].

Conventional materials that exhibit magnetic response
(� � 1) are far less common in nature than materials that
exhibit electric response, and they are particularly rare at
infrared (ir) and visible frequencies (common ferromag-
netic and antiferromagnetic systems work at frequencies
below 1 THz) [11,12]. Consequently, it is very difficult to
achieve magnetic response in ir and visible ranges even
with composite materials. Recently, Pendry et al. [13]
proposed that split rings composed of nonmagnetic metal
could exhibit strong magnetic response due to the inherent
LC resonance and hence an effectively negative � can be
obtained at ir and visible frequencies (�� 10a), leading to
many novel concepts and potential applications as well
[12–15]. However, it is generally believed that usual PCs
should not exhibit magnetic response as magnetic reso-
nances do not exist [3–6,10].

In this Letter, we study the long-wavelength behavior of
metallic PCs (MPCs) consisting of metallic cylinders or
spheres. Analytical formulas are derived for "e and �e
within the coherent-potential approximation (CPA) [16,17]
and their accuracy is confirmed by accurate multiple scat-
06=96(22)=223901(4) 22390
tering [Korringa-Kohn-Rostoker (KKR)] calculations
[18,19]. We show that diamagnetic response (�e < 1) at
ir and visible frequencies can be achieved in the MPCs
when the wavelength is still much longer than the unit-cell
size (�� 2000a for the a � 150 nm case). When ��
100a, MPCs will exhibit strong diamagnetic response
(�e < 0:8), leading to many interesting phenomena such
as the unusual Brewster angle for s waves and incident-
angle-and-polarization-independent reflection and trans-
mission. We stress that the magnetic response of our
MPCs is different from the metallic split-ring resonators
(SRRs) since it does not rely on the magnetic resonances.
Although the magnetic response of MPCs is weaker than
that of SRRs, it can occur in a wider frequency range.

We first consider a 2D PC composed of circular cylin-
ders of ("1; �1) and radius r in the matrix of (";�) as
shown in Fig. 1(a). For propagation of waves parallel to the
plane of periodicity there exist two independent TE and
TM modes (the H and E field is parallel to the cylinders,
respectively). For TE modes, the magnetic field obeys

�r2 � k2�Hz � 0; (1)

which is subjected to the continuities of Hz and 1
" @Hz=@�

at the surface of each cylinder (in the cylindrical coordi-
nates (�; �) with origin at the center of cylinder). The wave
number in the cylinder and the matrix is given by k1 ������
"1
p ������

�1
p

k0 (k0 � !=c, where ! is the angular frequency
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and c is the light speed in vacuum) and k �
���
"
p ����

�
p

k0. In
the following, we will focus on the TE mode and the results
can be applied to TM mode simply by replacing �Hz; ";��
with �Ez;�; "�.

Then we derive analytical formulas for "e and �e with
the CPA method [16,17] in the long-wavelength limit. We
consider a ‘‘circular unit cell’’ (coated cylinder) of radius
R � Su=

����
�
p

(where Su is the area of a unit cell; e.g., Su �
a2 for square lattices. So the filling fraction fs �

�r2

Su
� r2

R2 )
22390
and replace the 2D PC outside by a uniform effective
medium of "e, �e, and ke �

�����
"e
p ������

�e
p

k0 [see Fig. 1(b)].
Hz can be written as: HI

z �
P
mGmJm�k1��e

im� when � <
r,HII

z �
P
m�EmJm�k�� � FmHm�k���e

im� when R> �>
r, and HIII

z �
P
m�AmJm�ke�� � BmHm�ke���eim� when

� > R [where the Bessel (Hankel) function Jm (Hm) stands
for the mth-order cylindrical incident (scattering) waves].
It can be shown that the mth-order scattering coefficient of
the coated cylinder Dm 	 Bm=Am � 0 (which defines the
effective medium) when
�

1
" kJ

0
m�kR� � Jm�kR�

1
"e
keJ

0
m�keR�=Jm�keR�

1
" kH

0
m�kR� �Hm�kR�

1
"e
keJ0m�keR�=Jm�keR�

� �

1
" kJ

0
m�kr� � Jm�kr�

1
"1
k1J

0
m�k1r�=Jm�k1r�

1
" kH

0
m�kr� �Hm�kr�

1
"1
k1J0m�k1r�=Jm�k1r�

: (2)
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FIG. 2 (color online). k1r, "1, ~"1, �1, ~�1, "e (real part), and
�e (real part) of a 2D PC (square lattice) of aluminum cylinders
in air in the lowest TE band [0< Im�"e�< 0:04, 0< Im��e�<
0:09]. The lattice constant a � 150 nm and the radius of cylin-
der r � 52:5 nm. �1 � 1 and a Drude model of "1 �

1� f2
p=�f2 � if�f� are used for Al where fp � 3570 THz,

f� � 19:4 THz.
We note that the second term in Eq. (2) is just themth-order
scattering coefficient of the core cylinder [from which the
first term can be obtained by replacing (r; k1; "1) by
(R; ke; "e)]. If we only consider the scattering of cylindrical
waves of the two lowest ordersm � 0 and 1, "e and�e can
be solved numerically from Eq. (2) [by changing Eq. (2) as
Cm �

1
"e
keJ0m�keR�=Jm�keR�].

When ka, kea
 1, Eq. (2) with m � 0 and 1 becomes

�e � �1� fs��� fs ~�1;
"e � "
"e � "

�
~"1 � "
~"1 � "

fs; (3)

~� 1 � �1p�k1r�; p�x� � �2J00�x�=�xJ0�x��; (4)

~" 1 � "1g�k1r�; g�x� � J1�x�=�xJ
0
1�x��; (5)

where p�0� � g�0� � 1, p�x�; g�x� � 1 when 0< jxj< 1,
p�ix� � 2=x, and g�ix� � 1=x when x > 2 [20].

For conventional dielectric PCs with comparable "1 and
", k1r
 1 when ka
 1 and Eqs. (3)–(5) always reduce
to the Maxwell-Garnett (MG) formulas (by ~�1 � �1 and
~"1 � "1) [10], namely

�e � �1� fs��� fs�1;
"e � "
"e � "

�
"1 � "
"1 � "

fs: (6)

But in MPCs, k1r
 1 only when ka! 0 ["1 �

1� f2
p=�f2 � if�f� � if2

p=f�f when f ! 0]. When ka
is not so small ("1 � �f2

p=f2), k1r � ir=�p, where �p �
c=2�fp is the skin depth of metal (�13 nm for Al) in the ir
or visible range. ~�1 � �1 and the MG formulas will be
valid only when r < �p. When r > �p, ~�1 <�1 and
MPCs will be effectively diamagnetic. Especially when
r > 40�p and � < 100a (to be shown later), ~�1 � 0 and
the MPCs will exhibit strong diamagnetic response.

There exists a particular case of perfect metallic PCs
(PMPCs) [3]. Using�1�1 and "1��f

2
p=f

2 (fp ! �1),
Equations (3)–(5) become (by ~�1 � 0 and ~"1 � �1):

�e � �1� fs��; "e � "�1� fs�=�1� fs�: (7)

Equation (7) can also be derived using the CPA method and
the boundary condition of @HII

z �r�=@� � 0 (TE) for
perfect-metal cylinders [17]. Previously, Nicorovici et al.
[3] found an interesting problem in PMPCs of " � � � 1
that the refraction index ne �

��������������
1� fs
p

could not be ex-
plained using the MG theory and "1 � �1. Now the
problem is clear that ne �

�����
"e
p ������

�e
p

and Eq. (7) should
be used for PMPCs, agreeing with the recent suggestion by
Krokhin and Reyes [3].

To check the validity of the above analytic formulas, we
use the S-matrix-combined KKR method (including high-
order cylindrical waves) [18,19] and do the transmission
calculations for the normal incidence of a plane wave upon
a MPC slab. Then the "e and �e of MPCs can be obtained
from the complex transmission and reflection coefficients
[14,21]. In Fig. 2, we show the accurate KKR results of "e
and �e for a square lattice of Al cylinders in air with a �
150 nm and r � 52:5 nm together with those from differ-
ent formulas. It can be seen that the MG formulas are only
valid when � > 2000a and the MPCs are nonmagnetic. For
higher frequencies, the MPCs become effectively diamag-
netic and Eqs. (3)–(5) (when 120a < �< 2000a) or direct
solution of Eq. (2) (when 5a < �< 120a) should be used.
1-2
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FIG. 3 (color online). KKR results of "e and �e of 2D PCs
(square lattice) of Al (from top to bottom: the lattice constant
a � 25, 55, 90, 150, 300, 1000 nm) or perfect-metal (the bottom
line) cylinders (r=a � 0:35) in air for TE mode.
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FIG. 4 (color online). (a) Reflectance as a function of the in-
cident angle � at � � 1550 nm (TE incidence), and (b) Brewster
angle as a function of the frequency of incident waves for a two
layer of the 2D MPC studied in Fig. 2 (the transmittance is less
than 5 10�9 for the TM incidence). The light shaded range
stands for the visible frequencies.
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The MPC will be strongly effectively diamagnetic (�e <
0:8) when � < 100a. When � < 120a (approaching the
band gap), �e will decrease strongly and diverge at the
band edge due to the Bragg resonance. At high frequencies
near the band gap (� < 5a), the scattering of high-order
cylindrical waves will be important and more accurate
KKR calculations are needed.

In Fig. 3, we show the KKR results of "e and �e for
square lattices of Al and perfect-metal cylinders (r=a �
0:35) in air. It can be seen that the MPCs have almost the
same "e � 2:28 when � > 50a. But�e will be quite differ-
ent for MPCs with varying the lattice constant a. When
� > 10a, the MPC with a < 25 nm (so r < 0:7�p) behaves
nonmagneticly and those with larger a can be effectively
diamagnetic. When a > 1:5 �m (so r > 40�p), the MPC
can have almost the same diamagnetic property with
PMPC for � < 100a.

The "e and �e of MPCs can be used to determine the
optical properties of MPCs, such as refraction, reflection,
and transmission [11]. Here we will focus on the Brewster
angle (�b) phenomenon, i.e., total transmission of TE
waves at a particular incident angle �b. In usual dielectric
materials, the zero reflection occurs when the reflected rays
are perpendicular to the refracted rays due to the zero EM
emission of electric dipoles (excited by refracted waves) in
the dipolar direction. But for the MPCs with �e < 1,
magnetic dipoles will also be excited and this perpendicu-
larity does not exist. It can be shown that

�b � arctan
����������������������������������������������������������������������������
��b"2

e � "b"e�e�=�"b"e�e ��b"2
b�

q
(8)

for a MPC in the background with "b and �b [11]. In
Fig. 4, we show the Brewster angle for a square lattice of
22390
Al cylinders in air (a � 150 nm, r � 52:5 nm). The �b
predicted by Eqs. (2) and (8) agrees well with the accurate
KKR value. For frequencies lower than 1 THz, the MPC
will be nonmagnetic ("e � 2:28, �e � 1) and �b � 56:5�.
When f � 193 THz (� � 1550 nm), the MPC will exhibit
strong diamagnetic response and �b � 65:5�. Previously,
2D MPCs can act as ir polarizers (usually working at
normal incidence) due to the low-frequency band gap for
TM waves. Our results indicate that 2D MPCs can further
act as ir TE-TM splitters at �b. We note that this complete
splitting of TE and TM waves does not exist at dielectric
interfaces.

By now, we have shown the effectively diamagnetic
behavior of 2D MPCs for the TE waves. This diamagnetic
response can be understood by �e 	 hBzi=�0hHzi � �1�
fs��� fs�1hH

I
zi=H

II
z , where hHzi � HII

z (hBzi �
�1� fs�B

II
z � fshB

I
zi) is the average of H (B) field over

the line-boundary (surface) of the unit cell [14]. For m �
0, HI

z � J0�k1��, HII
z � HI

z�r� � J0�k1r� (when ka
 1),
hHI

zi 	 2r�2
R
r
0 H

I
z�d� � �2J00�k1r�=k1r, and thus the�e

in Eq. (3) can be alternatively obtained. We note that
surface currents J� � �"�1

1 � 1��r HI�� � �@HI
z=@�

can be induced in metal cylinders [see Fig. 1(b)] and
hHI

zi � �2J00�k1r�=k1r can also be obtained by hHI
zi �

�external�HII
z � �induced�r�2

R
r
0 J��

2d�. Since HI
z decays

inside the metallic cylinders and hHI
zi<HII

z , �e can be
less than 1 in MPCs.

Similar effective diamagnetic response can also exist in
3D MPCs consisting of metallic spheres. Unlike 2D, 3D
MPCs can have isotropic �e and "e due to degenerated TE
and TM modes at the low frequencies. Using similar CPA
derivations, we can obtain the following relation
1
�

@
@R �Rjl�kR�� � jl�kR�

1
�e

@
@R �Rjl�keR��=jl�keR�

1
�

@
@R �Rhl�kR�� � hl�kR�

1
�e

@
@R �Rjl�keR��=jl�keR�

�

1
�

@
@r �rjl�kr�� � jl�kr�

1
�1

@
@r �rjl�k1r��=jl�k1r�

1
�

@
@r �rhl�kr�� � hl�kr�

1
�1

@
@r �rjl�k1r��=jl�k1r�

(9)
and another equation with replacing � by " from the zero
H and E scattering [22], where jl (hl) is the lth spherical
Bessel (Hankel) function. When ka, kea
 1, the equa-
tions with l � 1 (the lowest order in 3D) become
�e��
�e� 2� � fs

~�1��
~�1� 2�

;
"e�"
"e� 2"

� fs
~"1�"
~"1� 2"

; (10)

~� 1 � �1q�k1r�; ~"1 � "1q�k1r�; (11)
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FIG. 5 (color online). (a) Brewster angle as a function of "b
(the light gray area is for s waves and others for p waves), and
(b) reflectance as a function of incident angle � for the incidence
of light at � � 1550 nm from a dielectric media of "b to a 3D
MPC of "e � 2:95 and �e � 0:90.
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q�x� � 2=�1� xj01�x�=j1�x��; (12)

where fs is the volume ratio of spheres in PCs [15,20].
Since q�x� behaves like p�x�, similar diamagnetic response
(like Fig. 3) can occur in 3D MPCs in the long-wavelength
limit.

It is known that the Brewster angle exists only for p
waves at usual dielectric interfaces. However, at the inter-
face between a dielectric medium of "b and a 3D MPC of
"e and �e (�e < 1), the Brewster angle can also exist for s
waves when "e�e < "b < "e=�e (for p waves when "b <
"e�e or "b > "e=�e) [11]. For example, a simple-cubic
lattice (a � 150 nm) of Al spheres of r � 48:5 nm in glass
(" � 2) will be of �e � 0:90 and "e � 2:95 at � �
1550 nm. When 2:66< "b < 3:28, a Brewster angle exists
for s waves (see Fig. 5); e.g., �b � 34:4� for "b � 3:05
(Al2O3). When "b � "e=�e � 3:28 (impedance match),
�b � 0� and both s and p waves can totally enter the 3D
MPC at normal incidence.

The reflection and transmission depend on both the
incident angle and polarizations at dielectric interfaces.
But at the interface between a dielectric medium of "b
and a 3D MPC of "e and �e, the dependence will not
exist when the refractive indices are matched, namely
"b � "e�e [see Fig. 5(b), where the reflectance can be
increased using a 3D MPC of larger fs]. This interesting
feature may facilitate the fabrication of some incident-
angle-and-polarization-independent optical devices [23].

In summary, we have demonstrated effective diamag-
netic response of MPCs in the very long-wavelength range
(� < 2000a) by nontrivial modifications of the Maxwell-
Garnett formulas, leading to many interesting phe-
nomena such as the unusual Brewster angle for s waves
and incident-angle-and-polarization-independent reflec-
tion and transmission.
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