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3D Quantum Gravity and Effective Noncommutative Quantum Field Theory
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We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after
integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory
symmetric under a � deformation of the Poincaré group.
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One of the most pressing issues in quantum gravity (QG)
is the semiclassical regime. In this Letter, we answer this
question in the context of matter coupled to 3D gravity. We
show how to recover standard quantum field theory (QFT)
amplitudes in the no-gravity limit and how to compute the
QG corrections.

Let us consider a matter field � coupled to gravity,

Z �
Z
Dg

Z
D�eiS��;g��iSGR�g�; (1)

where g is the spacetime metric, SGR�g� the Einstein
gravity action, and S��; g� the action defining the dynam-
ics of� in the metric g. Our goal is to integrate out the QG
fluctuations and derive an effective action for� taking into
account the QG correction:

Z �
Z
D�eiSeff ���:

We propose to expand the � integration into Feynman
diagrams, which depend on the ‘‘background’’ metric g,
and to compute the QG effects on these Feynman diagram
evaluations:

Z �
X
�

C�

Z
DgI��g�e

iSGR�g� �
X
�

C�
~I�: (2)

Finally, we resum these deformed Feynman diagrams to
identify the effective action Seff��� taking into account the
QG corrections to the matter dynamics. Here, we prove
that this program can be explicitly realized for 3D quantum
gravity. The resulting effective matter theory is a noncom-
mutative field theory invariant under the � deformed
Poincaré group. The deformation parameter � is simply
related to the Newton constant for gravitation � � 4�G.
All technical proofs can be found in [1].

In a first order formalism, Riemannian 3D gravity is
described in the term of a frame field ei�dx� and a spin
connection !i

�dx
�, both valued in the Lie algebra so�3�.

Indices i and � run from 0 to 2. The action is defined as

S�e;!� �
1

16�G

Z
ei ^ Fi�w�; (3)

where F � d!�! ^! is the curvature tensor of the 1-
form !. The equations of motion for pure gravity impose
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that the connection is flat and the torsion vanishes,

F�!� � 0; T�!; e� � d!e � 0: (4)

This is actually a topological field theory. Particles are
introduced as topological defects [2]. Spinless particles
are a source of curvature (the spin introduces torsion):

Fi�!� � 4�Gpi��x�:

Outside the particle, the spacetime remains flat and the
particle creates a conical singularity with a deficit angle
related to the particle’s mass [3]:

� � �m: (5)

This deficit angle describes the feedback of the particle on
the spacetime geometry. Since � is obviously bounded by
2�, particles have a maximal allowed mass mP � �2G�

�1.
Note that the Planck massmP in three dimensions does not
depend on the Planck constant unlike the Planck length
lP � @m�1

P 	 @G. This feature is specific to 3D QG and
does not apply to the 4D theory.

The spin foam quantization of 3D gravity is given by the
Ponzano-Regge model [4], which was the first ever written
QG model. It is a discretization of the continuum path
integral, Z �

R
DeD!eiS�e;!�. Since the theory is topologi-

cal, the discretization actually provides an exact quantiza-
tion. Considering a triangulation � of a 3D manifold M
and a graph � 
 �, we insert particles with deficit angles
�e for all edges e 2 � of the graph. The partition function
is defined as the product of weights associated with the
edges and the tetrahedra:

I���� �
X
fjeg

Y
e=2�

dje
Y
e2�

K�e�je�
Y
t

�
je1

je2
je3

je4
je5

je6

�
; (6)

where we sum over all assignments of SO(3) representation
je 2 N to the edges of �. dj � �2j� 1� is the dimension
of the j representation and we associate a f6jg symbol with
each tetrahedron. h� � exp�i��3� is in the U(1) subgroup
and we define the weight:

K��j� �
i

2�2

e�idj���i��

cos�
; ReK� �

cos�

2�2 sin�
	j���;

where � > 0 is a regulator and 	j��� the trace of h� in the j
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representation. K� defines the insertion of a Feynman
propagator, while ReK� gives a Hadamard propagator
and leads back to the same partition function as in [5].

The partition function has a dual formulation in terms of
SO(3) group elements attached to the faces f 2 �:

I���; �e� �
Z Y

f

dgf
Y
e2�

~K�e�ge�
Y
e=2�

��ge�;

~K�e�h�� �
i

�2

1

�sin2�� sin2�e � i��
�
X
j

K��j�	j���;

(7)

where ge is the oriented product
Q
@f3egf and the function

~K��g� is invariant under conjugation. Using the real part of
K� leads to replacing ~K� by the distribution ���g�, which
fixes the rotation angle of g to �,Z

SO�3�
dgf�g����g� �

Z
SO�3�=U�1�

dxf�xh�x
�1�:

I���� is independent of the triangulation � and depends
only on the topology of �M;��. It is finite after suitable
gauge fixing of the diffeomorphism symmetry [6], which
removes redundancies in the product of � functions. Then
for a trivial topology M � �0; 1� � �2, I� is the projector
onto the physical states, that is, the space of flat connec-
tions on �2 [7]. Moreover, this quantization scheme has
been shown to be equivalent to the Chern-Simons quanti-
zation [8]. Finally, the large j asymptotics of the f6jg
symbols are related to the discrete Regge action for 3D
gravity [9].

We have defined a purely algebraic quantum gravity
amplitude I����. The Newton constant G only appears as
a unit to translate the algebraic quantities j; � into the
physical length l � jlP � j@G and the physical mass m �
�=� � �=4�G.

The essential point is that the QG amplitudes I���� are
the Feynman diagram evaluations of a noncommutative
field theory. Let us first consider a trivial topology M	
S3 with � planar. In this case, we can get rid of the
triangulation dependence and rewrite I� � I���� as [1]

I� �
Z Y

v2�

d3Xv
8��3

Z Y
e2�

dge ~K�e�ge�
Y
v2�

e�1=2��tr�XvGv�: (8)

The integral is over one copy of so�3� 	 R3 for each vertex
Xv � Xiv�i and one copy of SO(3) for each edge. We
define at each vertex v, the ordered product of the edge
group elements meeting at v,

Gv �
Y!
e�v

g�v�e�e ; (9)

�v�e� � 
1 depending on whether the edge is incoming or
outgoing at v. The kernel ~K� defines the Feynman propa-
gator and is given by

~K ��g� �
Z
R�
dTeiT�P

2�g���sin�m=��2�; (10)
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with 2i ~P�g� � tr�g ~�� the projection of g on Pauli matrices.
Changing the integration range from R� to R, we would
obtain the Hadamard function �� instead of ~K�. To further
simplify this expression, we introduce a noncommutative?
product on R3 such that

e�1=2��tr�Xg1� ? e�1=2��tr�Xg2� � e�1=2��tr�Xg1g2�: (11)

Using the parametrization of SO(3) group elements,

g � �P4 � 
�Pi�i�; P2
4 � �

2PiPi � 1; P4 � 0;

the ? product deforms the composition of plane waves,

e
� ~P1� ~P2�� ~X � e
 ~P1� ~X ? e
 ~P2� ~X; (12)

~P 1� ~P2�

������������������������
1��2j ~P2j

2
q

~P1�

������������������������
1��2j ~P1j

2
q

~P2�� ~P1� ~P2;

(13)

with � the 3D vector cross product. To define the ?
product on all functions, we introduce a new group
Fourier transform F: C�SO�3��! C��R

3� mapping func-
tions on the group SO(3) to functions on R3 with momenta
bounded by 1=�:

��X� �
Z
dg ~��g�e�1=2��tr�Xg�: (14)

The inverse group Fourier transform is explicitly written

~��g� �
Z
R3

d3X

8��3 ��X� ? e
�1=2��tr�Xg�1�

�
Z
R3

d3X

8��3 ��X�
��������������������������
1� �2P2�g�

q
e�1=2��tr�Xg�1�:

(15)

Under this Fourier transform, the ? product is dual to the
group convolution product. Finally, F is an isometry be-
tween L2�SO�3�� and C��R3� equipped with the norm

k�k2
� �

Z dX

8��3 � ? ��X�: (16)

Using this ? product, the amplitude (8) reads

I��
Z Y

v2�

dXv
8��3

Y
e2�

dge ~K�e�ge�
Y
v2�

��v2�e
��v�e�=2��tr�Xvge��:

(17)

Let us now restrict to the case where we have particles of
only one type so all masses are taken equal, me � m, and
consider the sum over trivalent graphs:

X
� trivalent

�jv�j

S�
I�; (18)

where � is a coupling constant, jv�j is the number of
vertices of �, and S� is the symmetry factor of the graph.
Remarkably, this sum can be obtained from the perturba-
tive expansion of a noncommutative field theory given
explicitly by

S �
Z d3x

8��3

�
1

2
�@i� ? @i���x� �

1

2

sin2m�

�2 �� ? ���x�

�
�
3!
�� ? � ? ���x�

�
; (19)
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where the field � is in C��R3�. Its momentum has support
in the ball of radius ��1. We can write this action in
momentum space,

S��� �
1

2

Z
dg
�
P2�g� �

sin2�m

�2

�
~��g� ~��g�1� �

�
3!

�
Z
dg1dg2dg3��g1g2g3� ~��g1� ~��g2� ~��g3�:

(20)

This is our effective field theory describing the dynamics of
the matter field after integrating out the gravitational sec-
tor. This noncommutative field theory action is symmetric
under a � deformed action of the Poincaré group. Calling
� the generators of Lorentz transformations and T~a the
generators of translations, the action of these generators on
one-particle states is undeformed:

� ~��g� � ~���g��1� � ~���P�g��; (21)

T~a ~��g� � ei ~P�g� ~a ~��g�: (22)

The nontrivial deformation of the Poincaré group appears
at the level of multiparticle states, and only the action of
the translations is deformed:

� ~��P1� ~��P2� � ~���P1� ~���P2�; (23)

T~a ~��P1� ~��P2� � ei ~P1� ~P2 ~a ~��P1� ~��P2�: (24)

It is straightforward to derive the Feynman rules from
the action (21) (see Fig. 1). The effective Feynman propa-
gator is the group Fourier transform of ~K��g�,

Km�X� � i
Z
dg

e�1=2��tr�Xg�

P2�g� � �sin�m
� �

2
: (25)

The effect of quantum gravity is twofold. First, the mass
gets renormalized m! sin�m=�. Second, the momentum
space is no longer the flat space but the homogeneously
curved space S3 	 SO�3�. This reflects that the momentum
is bounded jPj< 1=�.

At the interaction vertex the momentum addition be-
comes nonlinear with a conservation rule P1 � P2 � P3 �
0, which implies a nonconservation of momentum P1 �
P2 � P3 � 0. Intuitively, part of the energy involved in a
collision process is absorbed by the gravitational field:
gravitational effects cannot be ignored at high energy.
This effect, which is stronger at high momenta and for
g1

g1

g1

g1

g2
g2

g3

g1g2

≡ δ (g1g2g3)≡ K m (g1)

≡ δ (g1g2g1
− 1g2

− 1) δ(g2g2
− 1)

FIG. 1. Feynman rules for particles propagation in the
Ponzano-Regge model.
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noncollinear momenta, prevents the total momenta from
being larger than the Planck energy.

A last subtlety of the Feynman rules is the evaluation of
nonplanar diagrams. A careful analysis of I� shows that we
have a nontrivial braiding: for each crossing of two edges,
we associate a weight ��g1g2g0�1

1 g0�1
2 ���g2g0�1

2 � (see
Fig. 1). This reflects a nontrivial statistics where the
Fourier modes of the fields obey the exchange relation:

~��g1� ~��g2� � ~��g2� ~��g�1
2 g1g2�; (26)

which is naturally determined by our choice of star prod-
uct. Indeed, let us look at the product of two identical
fields:

� ? ��X� �
Z
dg1dg2e�1=2��tr�Xg1g2� ~��g1� ~��g2�; (27)

Under change of variables �g1; g2� ! �g2; g
�1
2 g1g2�, the

star product reads

� ? ��X� �
Z
dg1dg2e�1=2��tr�Xg1g2� ~��g2� ~��g�1

2 g1g2�:

(28)

The identification of the Fourier modes of � ? ��X� leads
to the exchange relation (26). This braiding was first
proposed in [10] for two particles coupled to 3D QG and
then computed in the Ponzano-Regge model in [5]. It is
encoded into a braiding matrix

R ~��g1� ~��g2� � ~��g2� ~��g�1
2 g1g2�: (29)

This is the R matrix of the � deformation of the Poincaré
group [10]. Such field theories with nontrivial braided
statistics are simply called braided noncommutative field
theories and were first introduced in [11].

Finally, the ? product induces a noncommutativity of
spacetime and a deformation of phase space:

�Xi; Xj� � i��ijkXk;

�Xi; Pj� � i
��������������������
1� �2P2

p
�ij � i��ijkPk:

(30)

This noncommutativity reflects the fact that momentum
space is curved. Indeed the coordinates X are realized as
right invariant derivations on momentum space and deri-
vations of a curved manifold do not commute. Moreover,
this noncommutativity being related to having bounded
momenta implies the existence of a minimal length scale
accessible in the theory. Indeed defining the noncommuta-
tive � function �0 ? ��X� � ��0��0�X�, we compute

�0�X� � 2�
J1�
jXj
� �

jXj
; (31)

with J1 the first Bessel function. It is clear that �0�X� is
concentrated around X � 0 but has a nonzero width.

Using this formalism, one can compute the QG effects
order by order in �. The zeroth order is defined by the no-
gravity limit �! 0. Starting from either the spin foam
amplitude I� given by (6) or the Feynman evaluations (17),
1-3
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one can show that the limit �! 0 is exactly given by the
Feynman evaluations of the usual commutative QFT:

I0
���; me� � lim

�!0
�3je�jI���; �e�

�
Z
R3

Y
f2�

d3 ~pf
Y
e2�

i

2��p2
e �m

2
e�

Y
e2�n�

�� ~pe�;

(32)

where je�j is the number of edges of the graph �, ~pf 2 R3

are variables attached to the faces of �, and ~pe �
P
f�e ~pf.

Moreover, since physical lengths and masses are defined in
� units, l � �j andm � �=�, taking �! 0 corresponds to
j! 1 and �! 0. For �	 0, the group multiplication on
SO(3) becomes Abelian at first order in �. More precisely,
we prove in [1] that the no-gravity limit of the Ponzano-
Regge model is actually the topological state sum based on
the Abelian group R3. This shows that the usual Feynman
evaluations of QFT in three dimensions can be generically
written as amplitudes of a topological theory.

Up to now, we have worked in the Riemannian context.
All the previous constructions and results can be straight-
forwardly extended to the Lorentzian theory. The
Lorentzian version of the Ponzano-Regge model is ex-
pressed in terms of the f6jg symbols of the noncompact
group SO�2; 1� [12]. Holonomies around particles are
SO�2; 1� group elements parametrized as g � P4 �
i�Pi�

i with P2
4 � �

2PiP
i � 1 and P4 � 0, with the metric

(��� ) and the su�1; 1� Pauli matrices, �0 � �0; �1;2 �
i�1;2. Massive particles correspond to the PiPi > 0 sector.
They are described by elliptic group elements, P4 � cos�,
�jPj � sin�. The deficit angle is given by the mass, � �
�m. All the mathematical relations of the Riemannian
theory are translated to the Lorentzian framework by
changing the signature of the metric. The propagator re-
mains given by the formula (10). The momentum space is
now the anti–de Sitter space AdS3 	 SO�2; 1�. The addi-
tion of momenta is deformed according to the formula
(13). We similarly introduce a group Fourier transform
F: C�SO�2; 1��! C��R

3� and a ? product dual to the
convolution product on SO�2; 1�. Finally, we derive the
effective noncommutative field theory with the same ex-
pression (19) as in the Riemannian case.

To summarize, we have shown that the 3D quantum
gravity amplitudes, defined through the Ponzano-Regge
spin foam model, are actually the Feynman diagram evalu-
ations of a (braided) noncommutative QFT. This effective
field theory describes the dynamics of the matter field after
integration of the gravitational degrees of freedom. The
theory is invariant under a � deformation of the Poincaré
algebra, which acts nontrivially on many-particle states.
This is an explicit realization of a QFT in the framework of
22130
deformed special relativity (see, e.g., [13]), which imple-
ments from first principles the original idea of Snyder [14]
of using a curved momentum space to regularize the
Feynman diagrams.

The formalism can naturally take into account a nonzero
cosmological constant �. The model is based on
Uq�SU�2�� and its Feynman rules are given in [1].

A natural question concerns the unitarity of our non-
commutative quantum field theory since the noncommuta-
tivity affects time [15]. We a priori do not expect a unitary
theory: since we have integrated out the gravity degrees of
freedom, we expect ghosts to appear at the Planck energy
mP � 1=�	 1=G.

Finally, the present results suggest an extension to four
dimensions. The standard 4D QFT Feynman graphs would
be expressed as expectation values of a 4D topological spin
foam model (see, e.g., [16,17]). That model would provide
the semiclassical limit of QG and be identified as the zeroth
order of an expansion in term of the inverse Planck mass �
of the full QG spin foam amplitudes. QG effects would
then appear as deformations of the Feynman graph evalu-
ations, and QG corrections to the scattering amplitudes
could be computed order by order in �.
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