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Criticality, the Area Law, and the Computational Power of Projected Entangled Pair States
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3Área de Matemática Aplicada, URJC, Móstoles (Madrid), Spain
(Received 27 January 2006; published 6 June 2006)
0031-9007=
The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices
induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy
exhibit a very rich structure including states with critical and topological properties. We prove, in
particular, that coherent versions of thermal states of any local 2D classical spin model correspond to such
PEPS, which are in turn ground states of local 2D quantum Hamiltonians. This correspondence maps
thermal onto quantum fluctuations, and it allows us to analytically construct critical quantum models
exhibiting a strict area law scaling of the entanglement entropy in the face of power law decaying
correlations. Moreover, it enables us to show that there exist PEPS which can serve as computational
resources for the solution of NP-hard problems.
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The concept of entanglement plays a central role in both
fields of quantum information theory and of strongly cor-
related systems. In quantum information theory it lies at
the heart of many applications and it is viewed as a
resource for various information processing tasks. In con-
densed matter theory, entanglement is one of the roots for
the notorious complexity of quantum many-body systems:
its presence necessitates a description within an exponen-
tially growing Hilbert space and it is intimately connected
with many of the fascinating properties which quantum
matter can exhibit at small temperatures.

Many fundamental questions arise at the crossing of
these fields: how is entanglement related to the power of
quantum computation on the one hand, and the difficulties
of classical simulations on the other? What is the scaling of
the entanglement entropy in spin systems, its relation to
criticality, and the appearance of topological quantum
order? All these questions can be addressed very easily
within the framework of so-called projected entangled pair
states (PEPS)—this is the intention of this Letter. We will
see, in particular, that all the above-mentioned properties
emerge naturally already within the simplest classes of
PEPS which include cluster, toric code, and resonating
valence bond states. This will enable us to settle a recent
debate about the relation between criticality and entropy
scaling, and it allows us to find computational resources for
the solution of NP-hard problems. The central tool of the
Letter is a general correspondence between thermal states
of classical 2D spin models and 2D quantum states with a
simple PEPS representation. This correspondence substi-
tutes thermal by quantum fluctuations while preserving the
correlations, and it thus allows to map temperature driven
classical phase transitions to zero-temperature quantum
phase transitions.

We begin by recalling the PEPS formalism, which was
introduced in the context of numerical renormalization
group methods for simulating strongly correlated quantum
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spin systems [1,2]. PEPS can be viewed as generalizations
of the Affleck, Kennedy, Lieb, and Tasaki (AKLT) valence
bond solids [3] to arbitrary lattices and dimensions.
Consider an arbitrary connected graph where each of N
vertices corresponds to a quantum system, a spin, with d
degrees of freedom. A PEPS j�i 2 CdN is then con-
structed by (i) assigning to each vertex as many virtual
spins of dimension D as there are adjacent edges,
(ii) putting a maximally entangled state jIi �

PD
i�1 jiii

onto each edge, and (iii) mapping the virtual onto the
physical spins by applying a linear map P:CD � � � � �
CD ! Cd at each vertex. Naturally, the graph is chosen
according to the physical symmetry, and although most of
the following holds in general we will consider square
lattices throughout. Different choices of P lead to different
quantum states, and in the case of a square lattice all these
PEPS live on a NdD4 dimensional manifold.

The power of the PEPS formalism is based on two
points. First, every state has a PEPS representation [4] as
long asD can become very large. Hence, with increasingD
this representation induces a hierarchy in the space of
states, from product or mean-field states (D � 1) to more
and more entangled ones; the manifold of D-dimensional
PEPS is indeed embedded in the one withD0 >D. Second,
it appears that many states arising in physics are very well
approximated by the lower levels of this hierarchy [5]. This
makes them a powerful variational class for numerical
renormalization group methods on the one hand [1,4],
and an interesting test bed for all kinds of quantum
many-body questions on the other [6].

Quantum-classical correspondence.—Consider a classi-
cal two-body spin Hamiltonian of the form H��1; . . . ;�N��P
�i;j�h��i;�j� with �i � 1; . . . ; d and respective partition

function Z �
P
� exp���H���� at inverse temperature �.

From this, a corresponding quantum state can be con-
structed by using the Boltzmann weights as superposition
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coefficients such that

j H;�i �
1����
Z
p

X
�1;...;�N

e���=2�H��1;...;�N�j�1; . . . ; �Ni: (1)

We will see that j H;�i has the following properties: (i) for
diagonal observables it gives rise to the same expectation
values and correlations as the classical thermal state, (ii) it
has a simple PEPS representation with D � d, (iii) it is the
ground state of a local quantum Hamiltonian, and
(iv) when considering asymptotically large systems (N !
1) the scaling of the entropy of a block of spins obeys a
strict area law. Whereas (i) is a direct consequence of the
construction, (iii) and (iv) are implied by the PEPS pa-
rametrization. In order to see the latter we rewrite the state
as

j H;�i �
1����
Z
p exp

�
�
�
2

X
�i;j�

ĥij

�
j	; � � � ;	i; (2)

where j	i �
Pd
s�1 jsi and ĥij is a diagonal operator acting

on sites i; j as ĥijj�i; �ji � h��i; �j�j�i; �ji. Following
Eq. (2) we can think of the state j H;�i as being con-
structed from the product state j	; � � � ;	i by applying
(nonunitary) gates exp���ĥ=2� to all neighboring spins. In
fact, we may interpret Eq. (2) as a quantum cellular au-
tomaton evolution in imaginary time. As explained in [2], a
nonlocal gate like exp���ĥ=2� can be reexpressed by local
operations which act additionally on an auxiliary maxi-
mally entangled state. More specifically, we take operators
P , P 0:Cd2

! Cd, each acting as P js; ki � jsih’sjki. Then
we obtain indeed exp���=2ĥ� � �P � P 0�jIi if we
choose the vectors ’s; ’0s0 such that

Pd
k�1h’sjkih’

0
s0 jki �

exp���=2h�s; s0�� which is always possible, e.g., by a
singular value decomposition. Applying these gates to all
edges leads then to the desired PEPS representation.

As an example, consider the Ising model on a 2D square
lattice withH��� � �

P
�i;j��i�j,�i � 
1. In this case we

can choose ’s � ’0s such that h’sjki are the matrix ele-
ments of the square root of the matrix h. Applying all the
gates gives then rise to a PEPS [7] with

P � j0ih’0jh’0jh’0jh’0j 	 j1ih’1jh’1jh’1jh’1j:

Clearly, the expectation values of Pauli Sz operators in
j H;�i equal the classical expectation values. In the quan-
tum case, however, we do not only have diagonal observ-
ables, but also nondiagonal ones like Sx. Surprisingly, their
expectation values are determined by classical ones as
well, like

h �jS
1
xj �i �

X
�1;�2;...

e��H��1;�2;...�e�
P
�1;j�

�1�j ;

where the last term is a local 5-body expectation value in
the classical Gibbs state. In general, every local expecta-
tion value in the quantum state corresponds to a local
expectation value in the classical state, where the region
22060
the observable acts on is enlarged at most by the interacting
neighborhood.

Before continuing, it should be noted that several results
related to the above classical-quantum correspondence can
be found in the literature: a connection between so-called
Rokshar-Kivelson points and classical stochastic models
was recently made in [8] and between Hamiltonians and
rapidly mixing reversible Markov chains in [9]. In [10] a
generalization of the AKLT state on 2D lattices was con-
sidered and demonstrated that it can be mapped onto a
classical vertex model. The PEPS formalism, discussed in
the present Letter, provides a very natural framework for
describing and generalizing those results.

Criticality and the area law.—Recently a lot of attention
has been devoted to the scaling of the entanglement en-
tropy [6,11–13]. That is, given a ground state, how does the
entropy of a contiguous subsystem scale with the size of
the latter? Originally appearing in the context of black
holes, the renewed interest in this question comes from
the investigation of quantum phase transitions and the
quest for powerful ansatz states for the classical simulation
of quantum systems. The entropy of a block of spins
quantifies the amount of entanglement of that block with
the outside, and it could be expected to increase monoto-
nously both as a function of the area of the boundary Lb
and of the correlation length �corr.

In 1D it is known that critical states corresponding to a
conformal field theory exhibit a logarithmic divergence of
the entropy S� logL (L being the length of the subsys-
tem), whereas there seems to be a saturation scaling to
log�corr for all noncritical systems [11]. In D> 1 dimen-
sions, quasifree systems of bosons [12] and fermions [13]
have been studied. Whereas in the noncritical (gapped)
bosonic case there is a strict area law S � O�LD�1� (for
a cube with edge length L), this is violated in the gapless
case of fermions, where S� LD�1 logL. This naturally
rises the question about a one-to-one correspondence be-
tween criticality and a violation of the area law in the form
S� Ld�1 logL. Phrased differently, it raises the question
whether the leading term in the entropy (which scales like
the area) must have a prefactor that has, at criticality, a
singular (and hence universal) dependence on a coupling
constant (as is the case in 1D); is the leading term in the
entropy in the case of a critical system generated by non-
universal short distance physics or by the long-range criti-
cal modes?

The PEPS formalism together with the above classical-
quantum correspondence enables us now to answer this
question in the negative in a very simple way: consider the
classical 2D-Ising system, which is known to become
critical in the thermodynamic limit at �c �

1
2 ln�1	

���
2
p
�.

The corresponding quantum state j �ci is the exact ground
state of a local Hamiltonian (as shown in the next section)
and will have exactly the same correlations hS0

zSrzi � 1=
���
r
p

,
which now reflect critical quantum rather than thermal
fluctuations. In spite of this, the state obeys a strict area
1-2
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law bound S � 4L due to the PEPS representation with
D � 2 since the entropy is solely generated by breaking 4L
entangled bonds at the boundary (see Fig. 1). It is an open
question whether this behavior is generic or the conse-
quence of the fact that the considered example has a
dynamic critical exponent z � 2.

Parent Hamiltonians.—Every PEPS with finite D is (on
a sufficiently large lattice) the ground state of a local
Hamiltonian. The standard construction of such parent
Hamiltonians identifies projectors onto null spaces of re-
duced density operators with the interaction terms in the
Hamiltonian [3,6]. Here we will follow a different ap-
proach, related to the one described in [8,9], which is
adapted to PEPS constructed from classical models and
allows us to prove uniqueness and existence of a gap above
the ground state energy for �<�c.

Consider any ergodic local Markov process obeying
detailed balance and converging to the equilibrium distri-
bution of the classical model at inverse temperature � (e.g.,
by using Metropolis Monte Carlo or general Glauber dy-
namics). The stochastic transition matrix corresponding to
the Markov process can be written as a sum M��� �P
kMk��� where each Mk��� acts locally and obeys de-

tailed balance. The latter requires pa����Mk����a;b �
pb����Mk����b;a with pa��� � exp���H�a��=Z and a; b
denoting a particular configuration of the N spins. This is
equivalent to imposing that all the matrices

Pk��� � e���=2�
P
�ij�
ĥijMk���e

�=2
P
�ij�
ĥij

are symmetric. Obviously, the operator
P
kPk��� is sym-

metric and has exactly the same eigenvalues as
P
kMk���

since they are connected by a similarity transformation.
Furthermore, all Pk��� are local operators if the Mk���
were local. Note that 1�

P
kMk��� only has non-negative

eigenvalues with the equilibrium distribution correspond-
ing to eigenvalue 0. We thus define the Hamiltonian
H��� � 1�

P
kPk��� 
 0 which is a sum of local opera-

tors such that by construction j �i is the ground state of
FIG. 1 (color online). The entropy of a block of spins in a
PEPS scales like the perimeter of the block: the Schmidt rank of
the reduced density operator of the considered block of spins is
bounded above by the product of the Schmidt ranks of the broken
bonds.
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H���. Moreover, H��� is gapped iff the stochastic matrix
M��� has a gap. In this way the gap in the quantum
Hamiltonian corresponds to the rate of convergence to
equilibrium of the Markov process. In fact, the existence
of a gap in M��� for �< �c was proven in [14] for a class
of models including the 2D Ising model. At precisely the
critical point, Monte Carlo methods exhibit a slowing
down, leading to a gapless critical quantum Hamiltonian.
In fact, power law decaying correlations imply that the
Hamiltonian has to be gapless [15].

Computational power of PEPS.—In this section we will
treat the PEPS as a resource for computational tasks. Given
a source (black box) which can produce all D-dimensional
PEPS, and given the ability of performing arbitrary local
measurements, what kind of computational problems can
be solved efficiently? This question is clearly inspired by
the cluster state computational model [16]. In fact, it was
shown in [2] that the cluster state is a PEPS with D � 2.
Moreover, it is known to be a resource state for universal
quantum computation, i.e., it enables us for instance to
solve a typical NP problem—factorization—by merely
performing local measurements. Since PEPS with D � 1
are product states, D � 2 is the simplest class in which
useful resources can be expected. Exploiting the above
formalism, one can show that there are other powerful
resource states within this class, which even enable the
efficient solution ofNP-hard problems. In order to see this,
note that given a quantum state j �i which corresponds to
a classical Hamiltonian, we can efficiently determine ex-
pectation values in the classical Gibbs state by performing
local (diagonal) measurements on j �i. For �! 1 we
can for instance measure the ground state energy [17]. This
is, in particular, true for the D � 2 PEPS corresponding to
a two-dimensional Ising spin glass within a magnetic field.
This task was, however, shown to be an NP-hard problem
[19]. Similarly, the determination of the partition function
of the Potts model (D> 2) is known to be #P hard and
tightly connected to hard problems in knot theory. As the
task of calculating expectation values of PEPS can be done
by contracting a network of tensors arranged on a square
lattice [1], the above arguments prove that such a contrac-
tion of tensors is in general a NP-hard problem [20].

The approach of encoding the solution to an NP-hard
problem into a quantum state is reminiscent of adiabatic
quantum computing [18] which, however, deals typically
with ground states of 1D albeit nonlocal Hamiltonians. In
fact, one possible way of generating PEPS would be by
adiabatic means with the usual caveat concerning the gap
of the system. However, as in the case of the cluster state,
there might be better ways of generating these states since
after all we have an efficient local parametrization. The
above observations make the following problem very inter-
esting: what subclass of PEPS can be generated efficiently?

Let us finally show that two other classes of states,
important for quantum information and condensed matter
theory, are contained within small-D PEPS as well:
1-3
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Toric code states introduced in the context of quantum
error correction are very interesting as they exhibit non-
trivial topological properties [21]. In the case of an infinite
square lattice, the toric code is the ground state of a
Hamiltonian consisting of local commuting projectors,
each of them annihilating the ground state. The state can
again be written in terms of the (zero-temperature)
Boltzmann weights of a classical statistical model

j tori ’ lim
�!1

exp
�
	
�
2

X
�i

S�iz S
�i
z S

�i
z S

�i
z

�
j		 � � �	i;

where �i denotes the ith plaquette in the lattice with the
spins on the edges. We can again represent the commuting
nonlocal gates by introducing entangled auxiliary degrees
of freedom and applying local operations. We obtain pro-
jectors of the form

Pe � j0ih�
	j12h�

	j34 	 j1ih�
�j12h�

�j34

Po � j0ih�	j14h�
	j23 	 j1ih�

�j14h�
�j23;

where j 
i � j00i 
 j11i and Pe, Po act on the even and
odd sites of the bipartite lattice, respectively (the labels 1.4
denote the virtual qubits in clockwise order). Hence it is
again a simple PEPS with D � 2 exhibiting nontrivial
topological behavior. The PEPS formalism seems to pro-
vide a promising avenue for generating other states exhib-
iting those fascinating properties.

Resonating valence bond states (RVB) have been
studied extensively in the context of strongly correlated
systems [22]. These states exhibit topological quantum
order and do not seem to have any classical statistical
model associated to them because the wave function con-
tains negative weights. For the case of simplicity, let us
consider the simplest RVB state which is the equal weight
superposition of all possible coverings of singlets over
nearest neighbors on a square lattice. This RVB is equiva-
lent to the PEPS defined by

P � j0i�h0222j 	 h2022j 	 h2202j 	 h2220j� 	 j1i

� �h1222j 	 h2122j 	 h2212j 	 h2221j�

acting on virtual singlets of the form jSi � j01i � j10i 	
j22i distributed between all nearest neighbors.
Interestingly, we need D � 3 in this case, and again the
area law is automatically proven (i.e., the entropy of a
block of spins scales like the boundary). In a similar way,
RVB with singlets distributed beyond nearest neighbors
can be constructed.

In summary, we found that already the lowest levels of
the PEPS hierarchy exhibit an enormously rich structure—
they contain highly interesting states for quantum infor-
mation (e.g., cluster and toric code states) as well as for
condensed matter theory (e.g., critical and RVB states).
This makes them an interesting variational class for nu-
merical methods and a rich test bed for quantum many-
body questions. Based on a classical-quantum correspon-
22060
dence we were able to find critical quantum models whose
entropy scaling contrasts with the one for Fermions [and
corresponding spin models [23] ]. Moreover, it yielded a
local description of simple PEPS encoding the solution of
NP-hard problems.
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