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Experimental Entanglement Distillation of Two-Qubit Mixed States under Local Operations
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We experimentally demonstrate optimal entanglement distillation from two forms of two-qubit mixed
states under local filtering operations according to the constructive method intruduced by [F. Verstraete
et al., Phys. Rev. A 64, 010101(R) (2001)]. In principle, our setup can be easily applied to distilling
entanglement from arbitrary two-qubit partially mixed states. We also test the violation of the Clauser-
Horne-Shinmony-Holt inequality for the distilled state from the first form of mixed state to show its
‘‘hidden nonlocality.’’

DOI: 10.1103/PhysRevLett.96.220505 PACS numbers: 03.67.Mn, 03.65.Ud, 42.50.Dv, 42.65.Lm
Entanglement plays a key role in quantum information
processing, such as quantum teleportation [1], efficient
quantum computation [2], and entangled-assisted quantum
cryptography [3]. In general, these applications require
maximally entangled quantum states. However, owing to
decoherence and dissipation, practical states are normally
less entangled or partially mixed. To cope with this prob-
lem, entanglement concentration is essential [4] and vari-
ous schemes have been proposed [5–8]. Experimentally
Kwiat et al. implemented entanglement distillation from
nonmaximally entangled pure states and one special kind
of two-qubit mixed states using partial polarizers [9]. After
that, entanglement concentration from maximally en-
tangled mixed states (MEMS) has also been realized using
a similar method [10].

Generally speaking, there are two types of concentration
protocols: those involving collective operations performed
on many copies of the state and those working on individ-
ual copies. The latter case is of special interest in practical
protocols, because usually there might be technologic dif-
ficulties to implement collective operations. For this case,
although some experiments on certain kinds of two-qubit
mixed states have been experimentally demonstrated
[9,10], it is still interesting to explore what is the best we
can do to distill entanglement from arbitrary two-qubit
mixed states, only allowing local operations and classical
communication (LOCC) to be performed on each copy
separately. In Ref. [7], Kent et al. proved that the best state
one can obtain from general two-qubit mixed states is a
Bell diagonal state. After that, Verstraete et al. construc-
tively gave out the optimal local filtering operations for
distilling entanglement from an arbitrary two-qubit mixed
state [11]. In this Letter, we experimentally demonstrate
optimal entanglement distillation from two forms of two-
qubit mixed states which frequently exist in the real world.
The optimal local filtering operations are explicitly calcu-
lated according to the method provided in Ref. [11]. And in
principle, our setup can be applied to entanglement distil-
lation of arbitrary two-qubit mixed states.
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For general two-qubit mixed states, consider two sepa-
rated parts, Alice and Bob, who each control one subsys-
tem and are only allowed to carry out local operations and
classical communications. Specifically, Alice and Bob are
only permitted to perform local unitary transformations
and local filterings. Then what we are concerned about is
whether they can increase the entanglement of the system
and to what extent they can do that under LOCC. This
problem is very interesting because any real world quan-
tum communication channel is imperfect and generally,
Alice and Bob are not able to share perfect maximally
entangled states directly.

Theoretically, by introducing the real and linear parame-
trization, a two-qubit density matrix can be represented as
� � 1

4

P3
i;j�0 Rij�i � �j, where �0 is the 2� 2 identity

and �1; �2; �3 are usual Pauli matrices [11]. LOCC of the
type �0 � �A � B���A � B�y corresponds to left and right
multiplication by a proper orthochronous Lorentz trans-
formation (POLT), followed by normalization in this R
picture. The concentration protocol, that is optimal in the
sense that it produces a state of maximum entanglement of
formation (EOF) [7], has been obtained in [11] for two
cases. If R � �Rij� (Rij � Tr����i � �j��) is diagonaliz-
able by POLT, a Bell diagonal mixed state can be extracted
from the input state with a finite probability, which has the
maximum EOF and the maximum possible violation of the
Clauser-Horne-Shimony-Holt (CHSH) version of inequal-
ity [12,13]. When R is not diagonalizable by POLT, the
initial state can be quasidistillable. In the extreme case, the
input state can be asymptotically transformed into a Bell
diagonal state with lower rank, while the success probabil-
ity becomes infinitesimally close to zero. This method can
also be used for entanglement concentration from MEMS
since the method in [10] is a particular case of it.

Experimentally, to demonstrate the optimal entangle-
ment distillation protocol, we concentrate on the mixed
states that can be diagonalized by POLT. We specially
devise two forms of two-qubit mixed states which can be
easily prepared and distilled under fewer local operations.
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The experiment setup to investigate entanglement distilla-
tion is shown in Fig. 1. A 0.59 mm thick �-barium borate
(BBO) crystal arranged in the Kwiat type configuration
[14] is pumped by a 357.1 mm laser beam produced by an
Ar	 laser. In the spontaneous parametric down-conversion
process, a nonmaximally entangled state ajHHi 	 bjVVi
(H and V represent horizontal and vertical polarization of
the photons, respectively) is produced. In the experiment,
for simplicity, we adjust the half wave plate (HWP) and
tiltable quarter wave plate (QWP) in the pump path to
choose the real numbers a and b [14]. The experiment can
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FIG. 1. Experimental setup to implement entanglement distil-
lation. The half wave plate, quarter wave plate, and BBO crystal
in the pump beam are used to prepare nonmaximally entangled
states. In the mixed state preparation process, we use quartz
plates as decoherence channels which can be rotated to introduce
decoherence in a particular basis. The local operations are
realized using microscope slides and HWPs. To distill entangle-
ment from the first form of mixed state, the local operations
involve bilateral filterings. For the second form of mixed state,
only unilateral filtering is needed. The final QWP and HWP,
together with the PBS in each arm, enable analysis of the
polarization correlations in any basis, which can be applied to
tomographic measurement and Bell inequality analysis. To de-
tect the photon pairs, we use interference filters (bandwidth
4.62 nm), single-photon detectors, and two-photon coincidence.
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also be applied to the situation where a and b are complex
numbers. After the BBO crystal, the photon pairs pass
through two phase-damping channels in a particular basis.
In our scheme, each phase-damping channel consists of
one quartz plate with its optical axis rotated by a certain
angular to the vertical axis. For the first form of mixed
state, we select two same phase-damping channels in fH 	
V;H 
 Vg basis with the corresponding superoperators
f
�������������
1
 p
p

I;
����
p
p

�xgA � f
�������������
1
 p
p

I;
����
p
p

�xgB, where p is con-
nected with the thickness of the quartz and the bandwidth
of the interference filter [15]. Then the mixed state has the
form
�I �

�p
 1�2 	 b2�2p
 1� 0 0 ab��p
 1�2 	 p2�

0 p
 p2 2abp�1
 p� 0
0 2abp�1
 p� p
 p2 0

ab��p
 1�2 	 p2� 0 0 p2 
 b2�2p
 1�

0
BBB@

1
CCCA; (1)
In the experiment, we choose a � 0:23, b � 0:97, and p �
0:013 (a� 1:5 mm-thick quartz plate).

According to Ref. [11], the local operations for Alice
and Bob are

1 0
0 0:49

� �

and

0 1
1 0

� �
1 0
0 0:49

� �
;

respectively. For Alice, the filtering operation can be real-
ized by inserting into her path microscope slides tilted
about the vertical axis 73�. This configuration has a mea-
sured transmission of 92% for H polarization and 22% for
V polarization. As for Bob, there are one local filtering and
one single-qubit unitary operation. He just needs to place a
HWP after the microscope slides with the angle between
the optical axis and the vertical axis set to 45�. We can also
realize the local filtering operation using a Mach-Zehnder
interferometer [16], but it requires too much about its
stability and visibility.

To obtain the density matrices of the distilled states, we
use the technology of maximum likelihood tomography
[14,17]. By means of a QWP, HWP, and polarizing beam
splitter (PBS) in each arm, the polarization of each photon
can be analyzed in an arbitrary basis. Then, by combina-
tions of 16 single-photon projections jHi, jVi, jHi 	 jVi,
jHi 	 ijVi on each of the two-photon, we may derive the
density matrices describing the states of the photon pairs
(all the experimental density matrices in this Letter can be
found in [18]). Figure 2 shows the density matrices before
and after entanglement distillation.
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FIG. 2. Experimental data for the first form of mixed state.
Density matrices for the states before and after the entanglement
distillation are shown in (a) and (b). The fidelities with the
corresponding theoretical states are 94% and 82%.
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Here we use concurrence to characterize the entangle-
ment between the two subsystems since the EOF of a two-
qubit system is a convex monotonically increasing function
of the concurrence [19]. The concurrence before and after
distillation are 0:248� 0:021 and 0:672� 0:044, respec-
tively. The distilled state has the fidelity of [20] 82% with
the theoretical Bell diagonal state. From the data we can
see that by means of the local filtering operations we can
effectively increase the entanglement between the two
subsystems. The errors mainly stem from the imperfect
preparation of the initial mixed state (the fidelity is 94%)
and in the case of strong filtering, small changes in the
initial state may have a large impact on the final state.

We also show the ‘‘hidden nonlocality’’ of the distilled
state by its violation CHSH version of inequality. In the
CHSH inequality, the proposed value jSj, a combination of
four polarization correlation probabilities, should not be
more than 2 for local hidden variables theory. If jSj> 2, we
can only use quantum mechanics to explain the correla-
tions. Experimentally, the setup for tomographic recon-
struction can also be used for the measurement of the
CHSH inequality. The analysis settings of QWPs and
HWPs are determined by the tomographically measured
density matrix of each state using the method introduced in
Ref. [21]. Following the normalization procedure [22], we
obtain the value Sbefore � 1:853� 0:011 and Safter �
2:175� 0:024, corresponding to the values of S before
and after the entanglement distillation. The ideal value of
Safter is 2.192. The experiment result accords well with the
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FIG. 3. Experimental data for the second form of mixed state.
Density matrices in the case a � 0:44�0:52� before and after the
entanglement distillation are shown in (a) and (b) and (c) and (d).
The fidelities with the corresponding theoretical states are [(a)
and (b)] 98%(97%) and [(c) and (d)] 96%(97%).
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theory. Thus we obtain the violation of about 7�. In the
process of entanglement distillation, Alice and Bob only
employ LOCC operations. As pointed out by Kwiat et al.
[9], the nonlocality demonstrations rely on ‘‘conditional
probabilities’’: we use LOCC operations to select a sub-
ensemble with a small probability which can demonstrate
nonlocal correlations. This idea is similar to entanglement
distillation: we can just increase the entanglement of sub-
ensemble and can not do that for the whole ensemble [23].

Next consider distilling the entanglement from the
other form of a two-qubit mixed state. This time we let
the nonmaximally entangled states pass through two
same phase-damping channels in fH;Vg basis. The cor-
responding superoperators are f

�������������
1
 p
p

I;
����
p
p

�zgA �
f
�������������
1
 p
p

I;
����
p
p

�zgB. Each channel is a �3 mm quartz
which has a polarization-dependent optical path length
difference about 40� (� � 702:2 nm). After the decoher-
ence, the state has the form

�II �

a2 0 0 ab�
1	 2p�2

0 0 0 0
0 0 0 0

ab�
1	 2p�2 0 0 b2

0
BBB@

1
CCCA: (2)

For this kind of mixed state, the only local operation is just
a unilateral local filtering

b 0
0 a

� �

for Bob. We consider two cases (a � 0:44; 0:52 and p �
0:063). The experiment results are shown in Fig. 3. Under
this local filtering operation, the entanglement of the final
states can be increased. For a � 0:44, the concurrence
increases from 0:552� 0:017 to 0:641� 0:022; the fidel-
ities with the corresponding theoretical states are 98% and
96%, respectively. For a � 0:52, the concurrence increases
from 0:569� 0:017 to 0:666� 0:021; the fidelities with
the corresponding theoretical states are 97% and 97%,
respectively.

In conclusion, we have experimentally demonstrated
optimal local filtering operations for two general forms
of two-qubit mixed states that can be diagonalized by
POLT. For the first form of mixed state, the local operations
involve bilateral filtering; while for the second one, only
unilateral filtering is needed. In fact, we can generalize this
method to arbitrary two-qubit partially mixed states, be-
cause any nontrivial LOCC operations have the form [7,16]

�UA
1 0
0 �A

� �
U0A �UB

1 0
0 �B

� �
U0B;

where UA�B� and U0A�B� denote local unitary operations for
Alice (Bob), and � is a scale factor in the range 0 
 � 
 1
and 0 
 �A�B� 
 1. The main experimental difficulty lies
in the preparation of arbitrary two-qubit mixed states.

On the other hand, the imperfect preparation of initial
mixed states is also a main reason for the deviations of our
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results from theoretical calculation. However, in practical
schemes, one can directly choose the states derived from
the tomographic measurement of the input as the initial
mixed states and implement corresponding local filtering
operations on them. Thus the experimental results will
approach the theory with better accuracy. After the local
filtering operations, Bell diagonal states can be obtained
from the input states which have the maximum concur-
rence and the maximum possible violation of the CHSH
inequality. We experimentally obtain the violation of the
CHSH inequality about 7� for the distilled state from the
first form of mixed state, which verifies ‘‘hidden nonlocal-
ity’’ for this form of mixed state in the process of entangle-
ment distillation. Recently it has been found that Bell
diagonal states can also be used to implement the gen-
eralized tomographic quantum key distribution protocol
[24]. The method used in this experiment is very simple
and universal since it just needs LOCC operations and
it can effectively increase the entanglement of arbitrary
two-qubit partially mixed states. We believe it will be
helpful in the exploration of various quantum information
processing.
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