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General Monogamy Inequality for Bipartite Qubit Entanglement
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We consider multipartite states of qubits and prove that their bipartite quantum entanglement, as
quantified by the concurrence, satisfies a monogamy inequality conjectured by Coffman, Kundu, and
Wootters. We relate this monogamy inequality to the concept of frustration of correlations in quantum spin
systems.
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Quantum mechanics, unlike classical mechanics, allows
the existence of pure states of composite systems for which
it is not possible to assign a definite state to two or more
subsystems. States with this property are known as en-
tangled states. Entangled states have a number of remark-
able features, a fact which has inspired an enormous
literature in the years since their discovery. These proper-
ties have led to suggestions that the propensity of multi-
partite quantum systems to enter nonlocal superposition
states might be the defining characteristic of quantum
mechanics [1,2].

It is becoming clear that entanglement is a physical
resource. The exploration of this idea is a central goal in
the burgeoning field of quantum information theory. As a
consequence, the study of the mathematics underlying
entanglement has been a very active area and has led to
many operational and information-theoretic insights. As
for now, only the pure-state case of entanglement shared
between two parties is thoroughly understood and quanti-
fied; progress on the multipartite setting has been much
slower.

A key property, which may be as fundamental as the no-
cloning theorem, has been discovered recently in the con-
text of multipartite entanglement: entanglement is mo-
nogamous [3,4]. More precisely, there is an inevitable
trade-off between the amount of quantum entanglement
that two qubits A and B, in Alice’s and Bob’s possession,
respectively, can share and the quantum correlation that
Alice’s same qubit A can share with Charlie, a third party,
C [3]. In the context of quantum cryptography, such a
monogamy property is of fundamental importance because
it quantifies how much information an eavesdropper could
potentially obtain about the secret key to be extracted. The
constraints on shareability of entanglement lie also at the
heart of the success of many information-theoretic proto-
cols, such as entanglement distillation.

In the context of condensed-matter physics, the monog-
amy property gives rise to the frustration effects observed
in, e.g., Heisenberg antiferromagnets. Indeed, the perfect
ground state for an antiferromagnet would consist of sin-
glets between all interacting spins. But, as a particle can
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only share one unit of entanglement with all its neighbors
(this immediately follows from the dimension of its local
Hilbert space), it will try to spread its entanglement in an
optimal way with all its neighbors leading to a strongly
correlated ground state. The tools developed in this Letter
will allow us to turn such qualitative statements into quan-
titative ones.

The problem of fully quantifying the constraints on
distributed entanglement should be seen as analogous to
the N representability problem for fermions [5]. This is
because, just as is the case for fermions, if the constraints
on distributed entanglement were known explicitly then
this would render trivial [6] the task of computing the
ground-state energy of condensed-matter systems. The
results of this Letter represent the first step towards the
full quantification of the constraints on distributed
entanglement.

The main result of this Letter is a proof of the long-
standing conjecture of Coffman, Kundu, and Wootters
(CKW) [3] that the distribution of bipartite quantum en-
tanglement, as measured by the tangle �, amongst n qubits
satisfies a tight inequality:

���A1A2
� � ���A1A3

� � � � � � ���A1An� � ���A1�A2A3...An��;

(1)

where ���A1�A2A3...An�� denotes the bipartite quantum entan-
glement measured by the tangle across the bipartition
A1:A2A3 . . .An. This CKW inequality has been established
in the case of three qubits. However, the case of n qubits
was still open [7]. In this Letter we establish Eq. (1) for
arbitrary numbers n of qubits.

The outline of this Letter is as follows. We begin by
introducing and defining the quantum correlation measures
we study throughout. Following this, we reduce the CKW
inequality to a statement pertaining to quantum correlation
measures for a pure tripartite system consisting of two
qubits and a four-level quantum system. Such a system
is, up to local unitaries, completely determined by its two-
qubit reduced density operator. The proof will then be
completed by showing that the one-way correlation mea-
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sure [9,10] of a mixed state of two qubits is always larger or
equal than its tangle.

In our proof we have utilized a number of techniques.
We derive a computable formula for the linear Holevo �
quantity for all qubit maps and also for the one-way
correlation measure [10] for all two-qubit states.

To quantify mixed-state bipartite quantum correlations
we study two measures. We also study one channel ca-
pacity measure. The first measure we consider is the tangle
���AB�, which is the square of the concurrence [3,11–14],
���AB� � C2��AB�. The tangle measure pertains to bipar-
tite quantum states �AB of a qubit A and aD-level quantum
sytem B. To define the tangle we introduce the following
entropic measure, the linear entropy S2, for single-qubit
states � [15]:

S2��� �
4

2�1� tr��2�	 � 4 det���:

The linear entropy S2 is concave and unitarily invariant.
The tangle � is now defined for any state �AB of the 2


D system via the roof construction (for operational moti-
vations and further discussion of this construction see
[11,16])

���AB� �
4

inf
fpx; xg

X
x

pxS2�trB� x�	; (2)

where the infimum runs over all pure-state decompositions
fpx;  xg of �AB, �AB �

P
xpx x.

The second correlation measure we need is closely
related to a one-way correlation measure [9,10]. For any
mixed state �AB of a 2
D bipartite quantum system we
define

I 2 ��AB� �
4

max
fMxg
�S2��A� �

X
x

pxS2��x�	; (3)

where the maximum runs over all positive operator-valued
measures (POVMs) fMxg on Bob’s system, px � tr�IB �
Mx�AB� is the probability of outcome x, and �x � trB�IB �
Mx�AB�=px is the posterior state in Alice’s subsystem.

The third measure we will need, the linear Holevo �
capacity, is a capacity measure for qubit channels �. This
measure is related to the one-shot Holevo � quantity and is
defined by

�2��; �� � max
fpx; xg

�S2�����	 �
X
x

pxS2��� x�	�; (4)

where � is a qubit ensemble, � is an arbitrary qubit
channel (a trace-preserving completely-positive map),
and the maximum runs over all pure-state decompositions
fpx;  xg of �, � �

P
xpx x.

We now turn to the CKW inequality. Our strategy for
proving Eq. (1) will be to prove it for states �ABC of two
qubits AB, and a 2n�2-dimensional qudit C. The next step
we use is to proceed via induction by successively parti-
tioning the last qudit C into two subsystems, a qubit C1,
and a 2n�3-dimensional qudit C2, and establishing Eq. (1)
for the (typically mixed) state �AC1C2

. Thus, the formula we
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will try to prove is the following

���A�BC�� � ���AB� � ���AC�; (5)

for arbitrary states � of a 2
 2
 2n�2 system ABC.
We begin by trying to prove Eq. (5) for pure states. In

this case we can use the local-unitary invariance of ���AC�
to rotate the basis of subsystem C into the local Schmidt
basis juji, j � 1; . . . ; 4, given by the eigenvectors of �C. In
this way we can regard the 2n�2-dimensional qudit C as an
effective four-dimensional qudit. Therefore, it is sufficient
to establish Eq. (5) for a 2
 2
 4 system ABC.

Supposing we have proved the inequality Eq. (5) for
pure states we can extend Eq. (5) to mixed states �.
Consider the minimizing decomposition fpx; j xig for
���A�BC��, and apply the inequality Eq. (5) to each term,

���A�BC�� �
X
x

px���xA�BC��;

�
X
x

px����xAB� � ���
x
AC�	;

� ���AB� � ���AC�;

(6)

where �xA�BC� � j xih xj, and we have used the convexity
of � to arrive at the third line.

Now all that is required to establish the inequality
Eq. (5) for an arbitrary system of n qubits is to successively
apply Eq. (5) to partitions of C according to the inductive
recipe outlined above. We illustrate this procedure for pure
states � of four qubits ABC1C2. Let C � C1C2 be a com-
bined pair of qubits and apply Eq. (5),

���A�BC�� � ���AB� � ���AC�;

� ���AB� � ���AC1
� � ���AC2

�;
(7)

where we have applied the mixed-state version of the
inequality Eq. (5) in the second line. It is straightforward
to generalize this procedure to n qubits.

We have now reduced the CKW inequality to an inequal-
ity for the tangle for pure states of a tripartite system ABC
of two qubits A and B and a four-level systemC. In the case
of pure states, �AB and �AC contain the same information
(up to local unitaries); all possible POVM measurents at
Bob’s side induce all possible pure-state decompositions of
�AC, and therefore the following monogamy relation holds
(see also Koashi and Winter [9]):

S2��A� � ���A�BC�� � I 2 ��AB� � ���AC�: (8)

By comparing Eqs. (5) and (8) we see that in order to
establish Eq. (5) it is sufficient to establish the inequality

���AB� � I 2 ��AB�; (9)

for all two-qubit states �AB. As a first step toward proving
this inequality, we will now derive a computable formula
for I 2 ��AB�.

Any bipartite quantum state �AB may be written as

�AB � �� � IB�jrB0BihrB0Bj�; (10)
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where jrB0Bi is the symmetric two-qubit purification of the
reduced density operator �B on an auxiliary qubit system
B0 and �� is a qubit channel from B0 to A. It can now
readily be seen that the one-way correlation measure
I 2 ��AB� is equal to the one-shot channel capacity measure
�2��B; ���: all possible POVM measurements induce all
convex decompositions of �B0 .

The action of a qubit channel � on a single-qubit state
� � I�r��

2 , where� is the vector of Pauli operators, may be
written as

���� �
I � �Lr� l� � �

2
; (11)

where L is a 3
 3 real matrix and l is a three-dimensional
vector. In this Pauli basis, the possible decompositions of
�B into pure states are represented by all possible sets of
probabilities fpjg and unit vectors frjg for which

P
jpjrj �

rB, where I�rB��
2 � �B. The linear entropy S2, written in

terms of the Bloch vector r of a two-qubit state, is given by
S2�

I�r��
2 � � 1� jrj2. In this way we see that

Q�r��S2

�
�
�
I�r ��

2

��
�1��Lr�l�T�Lr�l�; (12)

which is a quadratic form in the Bloch vector r.
Substituting rj � rB � xj, one can easily check that the

calculation of �2��B; ��� reduces to determining fpj;xjg
subject to the conditions

P
jpjxj � 0 and k rB � xj k� 1

maximizing

max
fpj;xjg

X
j

pjxTj LTLxj: (13)

Let us, without loss of generality, assume that LTL is
diagonal with diagonal elements �x � �y � �z. The con-
straints k rB � xj k� 1 lead to the identities

�xxj�
2 � 1� k rB k2 �2rTBxj � �x

y
j�

2 � �xzj�
2:

Substituting this into (13), we get

�2��B;�����x�1�k rB k2�� max
fpj;xjg

X
j

pj���y��x��x
y
j�

2

���z��x��x
z
j�

2	:

This expression is obviously maximized by choosing xzj �
xyj � 0 for all j; the xxj then have to correspond to the roots
of the equation k rB � xj k� 1. There are exactly two such
roots, showing that the maximum �x�1� k rB k2� can be
reached by an ensemble of two states.

As S2��B� � 1� k rB k2 , we therefore obtain the fol-
lowing computable expression for the linear Holevo �
capacity for qubit channels:

�2��B; �� � �max�LTL�S2��B�: (14)

From this expression we also obtain an expression for
I 2 ��AB� via the correspondence Eq. (10).
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Now that we have a formula for I 2 ��AB�, we want to
prove that it is always larger than or equal to ���AB�. First
of all, we note that a local filtering operation of the form

�0AB �
�I�B��AB�I�B�y

tr��I�ByB��AB	
leaves L invariant and transforms

S2��0B� �
det�B�2

tr��I � ByB��AB	2
S2��B�:

It happens that I 2 transforms in exactly the same way as
the tangle does [17] (recalling that the tangle is the square
of the concurrence). As there always exists a filtering
operation for which �0B / I2, we can assume, without
loss of generality, that S2��B� � 1.

So let us consider �AB with TrA��AB� �
1
2 I. As

�max�LTL� � �2
max�L� where �max�L� is the largest sin-

gular value of L, we want to prove that�max�L� � C��AB�,
where C��AB� denotes the concurrence of �AB. It has been
proven in [18] that any mixed state of two qubits with
associated 3
 3 matrix Ljk � Tr���j � �k� can be writ-
ten as a convex decomposition of rank-2 density operators
all having the same Ljk. As the concurrence is convex, the
maximum concurrence for a given L will certainly be
achieved for a rank-2 density operator �2. Next notice
that any rank-2 matrix �2 can, up to local unitaries, be
written as

�2 � pj00ih00j � �1� p�j ih j:

Given the concurrence of C�j ih j� � C, then obviously
C��2� � �1� p�C. Let us now consider �max�L�; this is
the largest singular value of the sum of two matrices, one
having singular values �p; 0; 0	 and the other one having
�1� p��C;C; 1	 (corresponding to j00i and j i). Up to left
and right multiplication by unitaries, L is then given by

L � �1� p�
C 0 0
0 C 0
0 0 1

0
@

1
A� p

cos���
0

sin���

0
@

1
AuT;

where u is a unit vector. Obviously, the (2,2) element of
this matrix is �1� p�C, which is certainly a lower bound
for�max�L�. This therefore implies that I 2 ��AB� � ���AB�
for all two-qubit states �AB, hence proving the CKW
inequality Eq. (1).

The CKW inequality is likely to be useful in a number of
contexts, allowing simplified proofs of no-broadcasting
bounds and constraints for qubit multitap channel capaci-
ties. Perhaps the most interesting open problem at this
stage is to generalize Eq. (1) to systems other than qubits
and to the case where A1 consists of more than one qubit. In
both these cases the available generalizations of the tangle
measure for quantum entanglement provably cannot yield
entanglement sharing inequalities. It is an interesting open
problem to work out an easily computable measure of
quantum entanglement which will yield concrete useful
bounds on the distribution of private correlations.

The CKW inequality may be immediately applied to
study the entanglement for a wide class of complex quan-
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tum systems. Let us, for example, consider a translation-
invariant state of a quantum spin 1=2 system on a lattice
with coordination number d. The CKW inequality implies
that the concurrence C��� of the reduced density operator
� of two nearest neighbors satisfies C��� � �1�
hSni

2�=
���
d
p

, where hSni is the magnetization in the direction
n. Hence the CKW inequality provides a quantitative tool
of assessing how far the mean-field energy will be from the
exact one. Let us, e.g., consider the Heisenberg
Hamiltonian. As the overlap of a state � with a singlet is
bounded above by �1� C���	=2 [18] and as the mean-field
energy per bond is given by 1=2, the gap between mean-
field theory and the exact ground-state density [19] is
bounded above by �1� hSni

2�=�2
���
d
p
�. The classical result

[20] that mean-field theory becomes exact, i.e., � is sepa-
rable, when d! 1 is a limiting case of this inequality.

In a similar context, several investigations of the con-
straints on distributed entanglement have been carried out
recently. We mention, for example, [21,22]. The validity of
some results of these papers were conditioned on the truth
of the CKW inequality. As a consequence of this Letter it is
now possible to regard these results as true.

In this Letter we have proved that the distribution of
bipartite quantum entanglement is subject to certain share-
ability laws. It is tempting to think that such shareability
constraints might hold for other quantum correlation quan-
tities, such as the Bell violation of a bipartite Bell inequal-
ity. This is in fact the case; it has recently been discovered
[23] that bipartite Bell violations cannot be distributed
arbitrarily.

Finally, it is worth highlighting some classes of quantum
states which saturate the CKW inequality. The classic
example of a quantum state saturating the CKW inequality
is the W state

jWi �
1���
n
p �j0 . . . 01i � j0 . . . 10i � � � � � j1 . . . 00i�:

The W state has the property that the entanglement of any
two spins is equal, but the entanglement of the spin A1 is
not maximal. One might ask if there are any states which
saturate the CKW inequality which have the property that
the spin A1 at the focus is maximally entangled with the
rest. In this way we could regard such a state as sharing out
a full unit of entanglement with its neighbors. Such a state
does indeed exist and is given by

j i �
1���
2
p j0ij0 . . . 0i �

1���
2
p j1ijWi:

In conclusion, we proved the Coffman-Kundu-Wootters
monogamy inequality which quantifies the frustration of
entanglement between different parties. The unique feature
of this inequality is that it is valid for any multipartite state
of qubits, irrespective of the underlying symmetries, which
makes it much more general than de Finetti type bounds
[24]. We also discussed the relevance of the monogamous
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nature of entanglement in quantum cryptography and in
frustrated quantum spin systems.
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