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We derive the amount of information retrieved by a quantum measurement in estimating an unknown
maximally entangled state, along with the pertaining disturbance on the state itself. The optimal tradeoff
between information and disturbance is obtained, and a corresponding optimal measurement is provided.
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The tradeoff between information retrieved from a quan-
tum measurement and the disturbance caused on the state
of a quantum system is a fundamental concept of quantum
mechanics and has received a lot of attention in the litera-
ture [1–16]. Such an issue is studied for both founda-
tions and its enormous relevance in practice, in the realm
of quantum key distribution and quantum cryptography
[17,18].

Apart from many heuristic statements of the
information-disturbance tradeoff, just a few quantitative
derivations have been obtained in the scenario of quantum
state estimation [19,20]. The optimal tradeoff has been
derived in the following cases: in estimating a single
copy of an unknown pure state [7], many copies of iden-
tically prepared pure qubits [9], a single copy of a pure
state generated by independent phase-shifts [13], and an
unknown coherent state [16]. Recently, experimental real-
ization of minimal disturbance measurements has been
also reported [14,16].

The problem is typically the following. One performs a
measurement on a quantum state picked (randomly, or
according to an assigned a priori distribution) from a
known set, and evaluates the retrieved information along
with the disturbance caused on the state. The physical
transformation will be described by a quantum operation
(in an old-fashioned terminology, a measurement of the
first kind, where it is possible to describe the state after the
measurement). To quantify the tradeoff between informa-
tion and disturbance, one can adopt two mean fidelities [7]:
the estimation fidelity G, which evaluates on average the
best guess we can do of the original state on the basis of the
measurement outcome, and the operation fidelity F, which
measures the average resemblance of the state of the
system after the measurement to the original one.

In this Letter, we study and provide the optimal tradeoff
between estimation and operation fidelities when the state
is a completely unknown maximally entangled state of
finite-dimensional quantum systems. We also provide a
measurement that achieves such an optimal tradeoff.

The interest in maximally entangled states lies in the fact
that they represent a major resource in quantum informa-
tion technology, e.g., in quantum teleportation [21] and
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quantum cryptography [18]. The study of the information-
disturbance tradeoff for maximally entangled states can
become of practical relevance for posing general limits in
information eavesdropping and for analyzing security of
quantum cryptographic communications.

Our results will be obtained by exploiting the group
symmetry of the problem, which allows us to restrict our
analysis on covariant measurement instruments. In fact,
the property of covariance generally leads to a striking
simplification of problems that may look intractable, and
has been thoroughly used in the context of state and
parameter estimation [19,20].

A measurement process on a quantum state � with out-
comes frg is described by an instrument [22], namely, a set
of trace-decreasing completely positive (CP) maps fErg.
Each map can then be written in the Kraus form [23]

E r��� �
X
�

Ar��A
y
r�; (1)

and provides the state after the measurement

�r �
Er���

Tr �Er����
; (2)

along with the probability of outcome

pr � Tr �Er���� � Tr
�X
�

Ayr�Ar��
�
: (3)

The set of positive operators f�r �
P
�A
y
r�Ar�g is known

as positive operator-valued measure (POVM), and normal-
ization requires the completeness relation

P
r�r � I. This

is equivalent to require that the map
P
rEr is trace

preserving.
When considering bipartite systems it is convenient to

exploit the natural isomorphism between operators A on
the Hilbert space H and vectors jAii in H �2, defined
through the equation

jAii �
X
m;n

hmjAjnijmijni: (4)

We will make repeated use of the following identities [24]

A � BjCii � jACB�ii; (5)
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Tr 1�jAiihhBj� � A�B	; (6)

Tr 2�jAiihhBj� � ABy; (7)

hhAjBii � Tr �AyB�; (8)

where � and 	 denote transposition and complex conjuga-
tion with respect to the fixed basis in Eq. (4), and Tri
represents the partial trace over the ith Hilbert space. A
maximally entangled state in H �H , with dim�H � � d
will then be written as 1��

d
p jUgii, where Ug is a unitary d


d matrix, i.e., g denotes an element of the group SU�d�.
When performing averages on group parameters, for con-
venience we will take the normalized invariant Haar mea-
sure dg over the group, i.e.,

R
SU�d� dg � 1, and we will also

omit SU�d� from the symbol of integral. To avoid confu-
sion when the number of Hilbert spaces proliferates, we
will also use the notation jAiiij when it is necessary to
identify the vector in the Hilbert space H i �H j.
Similarly, A�ij� will denote a linear operator acting on
H i �H j.

The operation fidelity F evaluates on average how much
the state after the measurement resembles the original one,
in terms of the squared modulus of the scalar product.
Hence, for a measurement of an unknown maximally en-
tangled state, one has

F �
1

d2

Z
dg
X
r�

jhhUgjAr�jUgiij
2; (9)

where fAr�g are the Kraus operators of the measurement
instrument (1). For each measurement outcome r, one
guesses a maximally entangled state 1��

d
p jUrii and the cor-

responding average estimation fidelity is given by

G �
1

d3

Z
dg
X
r�

hhUgjA
y
r�Ar�jUgiijhhUrjUgiij

2: (10)

Without loss of generality, we can restrict out attention to
covariant instruments that satisfy

E h�Ug � I�U
y
g � I� � �Ug � I�Eg�1h����U

y
g � I�: (11)

In fact, for any instrument (1) and guess 1��
d
p jUrii in (10),

one can easily show that the covariant instrument

Eh��� �
X
r�

�UhU
y
r � I�Ar��UrU

y
h � I��


 �UhU
y
r � I�A

y
r��UrU

y
h � I� (12)

with continuous outcome h 2 SU�d�, along with the guess
1��
d
p jUhii, provides the same values of F and G as the

original instrument (1).
It is useful now to consider the Jamiołkowski represen-

tation [25] that gives a one-to-one correspondence between
a CP map E from H in to H out and a positive operator R on
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H out �H in through the equations

E ��� � Trin��Iout � �
��R�; R � �E � Iin�jIiihhIj:

(13)

When E is trace preserving, one has also Trout�R� � Iin.
For covariant instruments Eg acting on H 1 �H 2 as in

Eq. (12), the operator Rg acts on H �4, and has the form

Rg � U�1�g �U
	�3�
g R0U

y�1�
g �U��3�

g ; (14)

with R0 � 0, and the trace-preserving conditionZ
dgTr34�Rg� � I�12�: (15)

From Eq. (14) and the identity [Schur’s lemma for irre-
ducible group representations [26] ]Z

dgUgXU
y
g �

1

d
Tr �X�I; (16)

it follows that condition (15) is equivalent to

Tr 1;3;4�R0� � dI�2�; (17)

which implies Tr �R0� � d2.
By defining the projector on the unnormalized maxi-

mally entangled vector of H i �H j as

I �ij� � jIiiijijhhIj; (18)

the fidelities F and G can be written as F � Tr �RFR0� and
G � Tr �RGR0�, where RF and RG are the following posi-
tive operators

RF �
1

d2

Z
dgU�1�g �U

	�3�
g I �12� � I �34�Uy�1�g �U��3�

g ;

RG �
1

d3

Z
dgjhhIjUgiij

2U	�3�g �I�12� � I �34��U��3�
g

�
1

d
fI�12� � Tr12�I

�12� � I�34�RF�g:

Using the identity [Schur’s lemma for reducible group
representations [26] ]Z
dgUg �U

	
gYU

y
g �U�

g � Tr �YI=d�I=d

� Tr �Y�I � I=d��
I � I=d

d2 � 1
;

(19)

one obtains

RF �
1

d2�d2 � 1�

�
I � I �13� � I �24� �

1

d
�I�13� � I �24�

� I �13� � I�24��

�
;

RG �
1

d2�d2 � 1�

��
1�

2

d2

�
I �

1

d
I�12� � I �34�

�
:
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FIG. 1. Optimal information-disturbance tradeoff in estimating
an unknown maximally entangled state for dimension
d � 2 (solid line), d � 4 (dashed line), and d � 8 (dotted
line), where I and D are defined through Eqs. (25) and (26) in
terms of the estimation and operation fidelities G and F, re-
spectively. For given value of the retrieved information I, the
curves D�I� are a lower bound for the disturbance of any
measurement instrument.
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The optimal tradeoff between F and G can be found by
looking for a positive operator R0 that satisfies the trace-
preserving condition (17) and maximizes a convex combi-
nation

pG� �1� p�F � Tr f�pRG � �1� p�RF�R0g; (20)

where p 2 �0; 1� controls the tradeoff between the quality
of the state estimation and the quality of the output replica
of the state. Then, R0 will provide a covariant instrument
that achieves the optimal tradeoff. It turns out that for any p
the eigenvector corresponding to the maximum eigenvalue
of C�p� � pRG � �1� p�RF is of the form [27]

j�i � xjIii12jIii34 � yjIii13jIii24; (21)

with suitable positive x and y. Upon taking R0 proportional
to j�ih�j, the covariant instrument will then be optimal. In
fact, condition (17) can be easily verified, and the normal-
ization can be derived from the condition Tr �R0� � d2.

From Eqs. (13) and (14), it follows that the optimal
tradeoff can be reached by an instrument with Kraus
operators

Ag � ajUgiihhUgj � bI; (22)

where 0  a  1, and b � 1
d �

����������������������������������
d2�1� a2� � a2

p
� a�. In

fact, condition Tr �R0� � d2 is equivalent to �a2 � b2�d2 �
2abd � d2. The corresponding fidelities are given by

F �
1

d2�d2 � 1�
�d2 � �d2 � 2��a� bd�2�

� 1�
d2 � 2

d2 a2;

G �
1

d2�d2 � 1�
�d2 � 2� �ad� b�2� �

2� b2

d2 :

Notice that the instrument given by operators (22) is pure,
in the sense that it leaves pure states as pure. When no
measurement is performed (a � 0), one has F � 1 and
G � 1

d2 , which is equivalent to randomly guessing the
unknown state. The optimal estimation can be obtained
by a Bell measurement (b � 0), namely, by projectors on
maximally entangled states, and gives F � G � 2

d2 .
Upon eliminating a and b, we obtain the optimal trade-

off between F and G���������������������������������������
�d2 � 2��2� d2G�

q
�

������������������������������
�d2 � 1�F� 1

q
�

�������������
1� F
p

;

(23)

or, equivalently,��������������������������������������������
d2

d2 � 2

�
F�

1

d2 � 1

�s
�

���������������������������������
G�

d2 � 2

d2�d2 � 1�

s

�

��������������������������������������
�d2 � 1�

�
2

d2 �G
�s
: (24)
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Such an optimal tradeoff overcomes the corresponding one
for a completely unknown state [7] in a Hilbert space with
dimension d2, i.e., for a fixed value of the estimation
fidelity G one can achieve here a better value of the
operation fidelity F. In other words, when a partial knowl-
edge of the set of states is available (here, the fact that the
states are maximally entangled), one can obtain the same
estimation fidelity with a smaller disturbance of the state.

We can introduce two normalized quantities—a sort of
visibilities—that can be interpreted as the average infor-
mation I retrieved from the quantum measurement and the
average disturbance D affecting the original quantum state
as follows:

I �
G�G0

Gmax �G0
� d2G� 1 � 1� b2; (25)

where G0 �
1
d2 is the value of G for random guess and

Gmax �
2
d2 is the maximum value attainable by G;

D �
1� F

1� Fmin
�
d2�1� F�

d2 � 2
� a2; (26)

where Fmin �
2
d2 represents the average fidelity with the

maximally chaotic state I
d2 . Clearly, one has 0  I  1,

and 0  D  1. In this way, after some algebra one obtains
the quadratic expression

d2�D� I�2 � 4D�1� I� � 0 (27)

that gives the optimal information-disturbance tradeoff.
We plot in Fig. 1 the behavior of the tradeoff for dimension
d � 2; 4, and 8. For a given value of the information I, the
curves D�I� represent a lower bound for the disturbance of
any measurement instrument.

The optimal tradeoff is reached by a measuring instru-
ment (22) whose Kraus operators are coherent superposi-
tions of two extreme measurements: the identity map and
2-3
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the optimal map for estimating an unknown maximally
entangled state. It can be easily shown that the discrete
version fErg of such an instrument with Kraus operators

Ar �
1

d
�ajUriihhUrj � bI�; r � 1; 2; . . . ; d2; (28)

and orthogonal fjUriig, namely hhUrjUsii � d�rs, achieves
the same values of F and G, and hence the optimal tradeoff
as well. Notice that the POVM Ayr Ar corresponding to this
instrument is made of projectors on so-called Werner states
[29], i.e., convex mixtures of maximally entangled and
maximally chaotic states. The experimental realization of
such a kind of measurement could be investigated for
hyperentangled two-photon states, for which Bell measure-
ments have been already demonstrated [30].

In conclusion, a tight bound between the quality of
estimation of an unknown maximally entangled state and
the degree the initial state has to be changed by this
operation has been derived. Such a bound can be achieved
by noisy Bell measurements, where the noise continuously
controls the tradeoff between the information retrieved by
the measurement and the disturbance on the original state.
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