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The dynamical behavior of various physical and biological systems under the influence of delayed
feedback or coupling can be modeled by including terms with delayed arguments in the equations of
motion. In particular, the case of long delay may lead to complicated and high-dimensional dynamics. We
investigate the effects of delay in systems that display an oscillatory instability (Hopf bifurcation) in the
absence of delay. We show by analytical and numerical methods that the dynamical scenario includes the
coexistence of multiple stable periodic solutions and can be described in terms of the Eckhaus instability,
which is well known in the context of spatially extended systems.
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Differential equations with delayed argument y =
F(,y,), where y, = y(r — 1), turned out to be a useful
tool for studying many physical and biological systems.
Already in scalar equations the effect of the delay can lead
to complicated dynamics, and there are extensive studies
for a large variety of scalar equations describing, e.g.,
population dynamics [1], physiological control systems
[2], or delayed phase-locked loops [3,4]. In particular, it
has been shown that the dynamics can become high-
dimensional if the delay is large [3,5].

In the case of scalar equations, the dynamics without
delay are always trivial and all complicated effects are
induced by the delay. In systems of two or more variables,
one can observe nontrivial dynamics already without delay,
and it is an important question how these dynamics are
affected by introducing delayed terms.

Here we will investigate the interplay of an oscillatory
instability (Hopf bifurcation) with a long delayed feed-
back. As a paradigm for this very general situation, we
choose the equation

7 =(a+iB)z—zlz]* + z, (1)

where z(f) is a complex variable and «, B are real parame-
ters. Neglecting the feedback term, this system is just the
normal form for a supercritical Hopf bifurcation, in which
for increasing « at a = 0 the trivial solution z = 0 be-
comes unstable, and a stable periodic solution with fre-
quency 3 bifurcates. In the presence of the delay term, this
simple destabilization scenario changes drastically. It ap-
pears to be twofold: Already for & = —1 the trivial solu-
tion becomes weakly unstable, and, in a scenario similar to
the Eckhaus instability in spatially extended systems, a
large number of coexisting periodic attractors appears.
With further increasing bifurcation parameter «, the sta-
tionary state becomes strongly unstable and the system
exhibits an instability to a single periodic attractor. The
bifurcation parameter mediates the transition between
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these two states, one of which is essentially multidimen-
sional and the other is low-dimensional.

Examples of systems where this scenario can be found
are lasers with delayed feedback [6,7], ecological systems
with multiple species and delay [1], neural networks [8],
damped oscillators with delayed forcing [9], etc. Another
particular example is the method of time-delayed-feedback
control [10]. We want to emphasize that Eq. (1) should be
considered as a generic model, describing the behavior of
any system with large delay and certain spectral condi-
tions, which will be specified below.

The plan of our Letter is as follows: First, we perform a
linear stability analysis of the stationary state in order to
identify parameter values where it is weakly or strongly
unstable. This gives us the distinction between the two
stages in the destabilization scenario. Then we show nu-
merically that close to the initial destabilization at &« = —1
multiple coexisting periodic attractors occur. We show that
this scenario can be described by the Eckhaus phenome-
non, which is one the basic mechanisms of pattern forma-
tion in spatially extended systems [11-16]. To this end, we
derive a complex Ginzburg-Landau (GL) equation with
specific boundary conditions as an amplitude equation
which can describe the behavior of solutions in a vicinity
of the destabilization threshold. The existence of Eckhaus
instability in the amplitude equation then implies a similar
behavior in the delay system in this stage. We also note that
the above mentioned spatiotemporal representation fails
with further increasing of the bifurcation parameter.

Stability analysis.—We start with an analytical stability
analysis of the stationary state z =0 and identify the
parameter values leading to either weak or strong instabil-
ity. The growth rate A of small perturbations e*’ is deter-
mined by solutions of the characteristic equation

A—(a+iB)—e =0 )

Equation (2) has infinitely many solutions, which can be
expressed, for instance, via the complex Lambert function
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[10]. Since we consider the case of large delay 7, we are
interested in the asymptotics of these roots as 7 — oo.
Therefore, it is convenient to introduce a small parameter
e =1/7. As shown in Refs. [17,18] for more general
cases, the characteristic Eq. (2) has two types of solutions,
which have different asymptotical properties with respect
to &: (i) strongly unstable eigenvalues A¢ = a + i3 +
O(g) for a >0, which originate from the instantaneous
terms; (ii) pseudocontinuous spectrum of eigenvalues,
which, up to the leading order in &, can be approximated
as Ap(w) = iw + ey(w). Here the parameter @ admits a
countable set of values w = w; = wy + 27ke, k=
0, =1, £2,.... By substituting Ap into (2), we obtain in
leading order

y(0) = =3I’ + (w — B)’] 3)

The function y(w) is the rescaled real part of Ap and
determines the stability of the stationary state for o < 0.
Recall that for @ > 0 a strongly unstable eigenvalue ap-
pears. The pseudocontinuous spectrum is illustrated in
Fig. 1(a). One can see the curves [ReA/e = y(w), ImA =
w], along which the eigenvalues are located at discrete
positions, corresponding to @ = w; with small distances
27e between each other. These curves persist as delay is
increased and are filled more and more densely with
eigenvalues.

One can see that the pseudocontinuous spectrum implies
instability for || < 1. At |a| = 1, the curve touches the
imaginary axis at the critical frequency 8. Hence, in con-
trast to the Hopf bifurcation in the system without delay,
the loss of stability happens already for o = —1. With
increasing control parameter «, the stationary state be-
comes unstable to perturbations of the form e'®’, where
o belongs to some interval around 3. These unstable
frequencies can be obtained from (3) by the condition
y(w) >0, ie., a> + (w — B)> < 1. Figure 1(b) illustrates
these frequencies and summarizes the main conclusions of
the stability analysis: (i) For @ < —1, the stationary state is

(@)
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FIG. 1. Linear stability of system (1). (a) Curves of pseudo-
continuous spectrum, along which eigenvalues accumulate for
large delay, shown for three different parameter values. Solid
line: « = 0.8; dashed line: « = 1; dotted line: o = 1.2.
Destabilization occurs at |a| = 1. (b) The interval of unstable
frequencies w is shown in gray for different values of parameter
a. These frequencies correspond to the interval of ImA, for
which the pseudocontinuous spectrum from (a) is unstable
(weak instability). In addition, the strong instability region for
a >0 is indicated. 8 = 1 is fixed.

stable; (ii) for —1 < a < 0, it is weakly unstable; i.e., it has
unstable eigenvalues from the pseudocontinuous spectrum
with real parts proportional to g; (iii) for a >0, it is
strongly unstable, possessing the eigenvalue Ag = a + 8.

Note that strongly unstable eigenvalues from the instan-
taneous part and weakly unstable pseudocontinuous spec-
trum can be calculated similarly in any system with large
delay. In this way, the spectral conditions for appearance of
the Eckhaus scenario can be verified easily in any specific
model equation.

Numerical results.—In our numerical simulations, we
fix B = 1. First, we choose the bifurcation parameter & =
—0.8, such that the stationary state is already weakly
unstable. The results of the integration for system (1) are
shown in Fig. 2. For convenience, we show the orbit of the
delay system using a ‘‘spatiotemporal” representation
[19]. Roughly speaking, the horizontal axis corresponds
to the spacelike coordinate ranging from O to 7 and the
vertical axis to some rescaled slow time #/73. The precise
meaning of the axes will become clear below, when the
amplitude equations are introduced. Such a representation
is useful, since it shows the solution over a time interval of
order 73. We observe that the system can approach differ-
ent periodic states depending on initial conditions [20].
The solutions in Figs. 2(a) and 2(b) are obtained for the
initial functions zy(s) = 0.01(1 + i) cos(w;,s/7) (—7 <
s = 0), with w;;, = 0.6 and w;, = 1.6, respectively. The
figure shows that the asymptotic solutions have different
frequencies as well. This demonstrates the coexistence of
periodic attractors with different frequencies.

In order to find out which coexistent periodic attractors
are available in our system, we perform a numerical inte-
gration with different frequencies w;, of the initial con-
ditions. The results are shown in Fig. 3 for two different
values of delay 7 = 80 and 7 = 500. The frequencies w,
of the asymptotic states are plotted versus w;,. We observe
that about ten different frequencies appear for 7 = 80,
which can be realized depending on initial conditions.
For 7= 500, this frequency discretization still persists
but is no longer visible due to the small distance between
the neighboring frequencies.

D

FIG. 2. “Space-time’’ representation of the asymptotic states
of system (1) for « = —0.8 shows numerically the coexistence
of stable solutions with different frequencies. The real part of z is
plotted. The horizontal axis represents the spacelike direction
ranging from O to 7. Solutions in (a) and (b) have a different
number of maxima per delay interval. They are obtained by
choosing different initial conditions (see details in the text). 7 =
80, B8 = 1.
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2 T=500 2 T=80 tions from this bifurcation. Hence, we have
(O] ®
: . = (-1+pue*+ip)z+z, —zlzl~ 4)
1""}' - - _.-". B The procedure of deriving an amplitude equations for
- the delay system (4) uses a standard multiscale slow-
amplitude ansatz: 2(t) = eePTo[u(T) + ev(T) +

% i 2 % i 2
(Di” ('Oin

FIG. 3. Frequency of the limiting periodic attractor w, as a

function of the frequency of the initial condition wj,. Initial

condition: zy(s) = 0.01(1 + i) cos(wy,s). @« = —0.2, B = 1.

Note that Fig. 3 is obtained for a fixed value of the
bifurcation parameter &« = —0.2. Changing «, the range
of available frequencies w,, is varying as well. This depen-
dence of w, on « is summarized in Fig. 4, where « varies
from the bifurcation point « = —1 up to & = 1. We ob-
serve that the range of available frequencies of periodic
attractors w,, first increases quadratically as « is increased
from —1 and then shrinks to the single frequency w, = 8
for & > 0. Figure 4 shows how the dynamics of the system
changes as it goes through the bifurcation. We are now
going to describe analytically some important features of
this destabilization process. In particular, the analytical
arguments in the following section confirm the genericity
of the observed phenomenon as well as provide a good
quantitative description of the involved dynamical
regimes.

Eckhaus instability and amplitude equations.—The phe-
nomena, which are discovered numerically in Figs. 2—4,
can be partially understood by using the correspondence
between delayed systems and spatially extended systems
[19]. In fact, for « close to —1, we observe the Eckhaus
instability scenario for a delay system. In order to show
this, let us first derive the amplitude equation for (1), which
describes the dynamics of the amplitude of destabilized
oscillations close to the bifurcation. We assume o« = —1 +
we?, where u is a new parameter describing small devia-

t= 500
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FIG. 4. Dependence of the frequencies of the asymptotic states
w, on the bifurcation parameter «. Close to the destabilization
point at « = —1, the system exhibits typical Eckhaus instability.
The Eckhaus parabola (E) delineates the stability boundary for
the periodic states. For a > 0, the zero state is strongly unstable
with respect to the single mode with frequency 8 = 1 as in the
usual Hopf scenario, where no splitting of frequencies occurs.

e*w(T)], T = (et, €’t, &) in Eq. (4). A similar technique
was used in Refs. [6,19,21]. Therefore, we omit technical
details of the derivation, which will be published else-
where. As a result, we obtain the following Ginzburg-
Landau equation:

Iré = 30%:E + 9,€ + ué — EIEP, &)

with the boundary condition &(x,T) = e¢&(x — 1, T).
Here ¢ = —f7 mod 27 is the phase change within the
delay interval. Given a solution £(x, T) of (5), the solution
z(#) of the delay system (4) is

2(t) = gelP'é(et — %1, &31), (6)

which is expected to be accurate for a time interval of order
£73. Note that the linear convection term in (5) can be
eliminated by a suitable change of variables. Thus, we
obtain

Iré = 300.€ + né — élé1% (7

The obtained GL system (7) shows the Eckhaus insta-
bility at the bifurcation point x = 0 (cf. [12]). This phe-
nomenon was first reported in Ref. [11] and it is well
known for spatially extended systems [12—15]. We remind
the reader that in Eq. (7) it is characterized by the loss of
stability of the trivial solution to a periodic pattern of the
form e’#<* with the wave number .. For systems on an
unbounded domain, the trivial state becomes unstable to all
periodic patterns e'4*, whose wave number satisfies (g —
B.)* = 2u. However, these periodic solutions are them-
selves unstable, unless g belongs to the smaller interval
(g— B> = % M [22]. The Eckhaus region is the parabolic
region in the (g, #) plane containing stable plane waves.
This region is bounded by the Eckhaus parabola

we(q) = 3(q — B ®)

It has been shown in Ref. [12] that a similar Eckhaus
scenario occurs for systems in a large but bounded domain.
The main qualitative differences are as follows: (i) The set
of allowed frequencies is discretized due to the restrictions
imposed by the boundary conditions. (ii) The Eckhaus
parabola is shifted downwards

we=3q— B % ©)

We refer to the more detailed analysis of the Eckhaus
phenomenon for Eq. (7) in a finite domain to Ref. [12].
Note that, in the theory of amplitude equations for
spatially extended systems, Eq. (7) describes the dynam-
ics of the complex amplitude of the pattern via, e.g.,
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w(x, T) = &E(x, T)e'P* + &*(x, T)e 'B*, while for the de-
lay system we have the relationship (6).

Coming back to our delay system (4), we recall the
correspondence between the bifurcation parameters
e’ = a + 1 and the frequencies w, — 8 = &(q — B,).
Using these scalings, we obtain the Eckhaus parabola for
the delay system as

2
w1 =20, — BT = 2w, — B (10)

We emphasize the following interesting feature: Due to the
scaling restrains, our final formula for the Eckhaus region
for the delay system (10) is, in fact, approximated by the
corresponding formula for the unbounded domain (8) in
spite of the fact that the amplitude dynamics is governed by
the system on a finite domain.

The Eckhaus curve ag(w,) is plotted in Fig. 4 (the line
with label E). One can note that there is perfect matching of
the theoretically predicted results from the amplitude GL
model (7) and the numerically obtained results for the
delay Eq. (1) in the region, which is close to the bifurcation
point @ = —1.

When spatiotemporal representation fails.—The validity
of the amplitude Eq. (7) relies on the fact that the curve of
the pseudocontinuous spectrum (3) is well approximated
by a parabola. This clearly breaks down at a = 0. Here the
local dynamics in the vicinity of the zero state is dominated
by the single strongly unstable mode with the eigenvalue
Ag = a + iB. This appears to be true even in the presence
of the unstable pseudocontinuous spectrum for & < 1, and
we observe the typical scenario of a Hopf bifurcation with
a single periodic attractor.

Summary.—We have studied the destabilization sce-
nario of a system with an oscillatory instability and a
long delayed feedback. We have shown that the destabili-
zation occurs in two stages: (i) On the first stage, the
Eckhaus phenomenon occurs and multiple coexisting pe-
riodic attractors appear. This stage can be nicely approxi-
mated by the complex GL equation (5) as an amplitude
equation. (ii) On the second stage, the domain with mul-
tiple periodic attractors shrinks and one attractor with
frequency close to 8 survives; see Fig. 4. This stage can
no longer be explained by the amplitude equations.
Instead, a low-dimensional approximation should be used.

Our numerical and analytical studies were done for the
simplest specific equation, which includes an oscillatory
instability and a long delayed feedback and, hence, is able
to display these phenomena. Using the distinction between
strong and weak instabilities of delay equations with large
delay, we were able to specify the conditions which allow
to check easily whether this scenario occurs in any specific
model. In particular, it can be verified that the splitting of
the single emission mode of a laser with long delayed
feedback into so-called external cavity modes can be
understood within this context.

Finally, we remark that systems with large delay exhibit
many interesting phenomena, which are usually accompa-
nied by a high degree of multistability [23—25]. We show
in this Letter that such a multistability is an inherent feature
of large-delay systems, since it generically occurs already
at the basic oscillatory destabilization bifurcation. The
analytical calculations confirm that, as delay increases,
the number of such coexisting stable attractors grows
linearly.
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