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Scaling of Fluctuations in Traffic on Complex Networks
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We study the scaling of fluctuations with the mean of traffic in complex networks using a model where
the arrival and departure of ‘‘packets’’ follow exponential distributions, and the processing capability of
nodes is either unlimited or finite. The model presents a wide variety of exponents between 1=2 and 1 for
this scaling, revealing their dependence on the few parameters considered, and questioning the existence
of universality classes. We also report the experimental scaling of the fluctuations in the Internet for the
Abilene backbone network. We found scaling exponents between 0.71 and 0.86 that do not fit with the
exponent 1=2 reported in the literature.
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Recently, the theory of complex networks has started to
cope with the problem of dynamics on networks. After
much work devoted to the understanding of the network
topology [1], the physics community has begun to develop
models to explain the characteristics of traffic on the
dynamics on complex networks. Some stylized models of
traffic flow in complex networks [2–11] can be used to
gain intuition about dynamics on complex networks, and to
determine the leading parameters of the dynamic processes
related to the network topology.

The main results obtained up to now concerning traffic
flow in complex networks are related to the determination
of bounds for this flow to become congested. Nevertheless,
traffic on real complex networks, as, for example, the
Internet, is not driven by congestion processes but by large
fluctuations of the ‘‘normal’’ traffic behavior. In the case of
the Internet, the understanding of the physical laws gov-
erning the nature of traffic is crucial because of its impli-
cations in design, control, and speed of the whole network
[12].

In a couple of recent articles, Menezes and Barabasi
propose a model to understand the origin of fluctuations in
traffic processes in a number of real world systems, includ-
ing the Internet, the World Wide Web, and highway net-
works [13,14]. All of these systems can be represented at
an abstract level as networks in which packets travel from
one node to another, packets being real data packets or bits
in the Internet, files in the World Wide Web, and vehicles in
road networks. In particular, the authors considered the
relationship between the average number of packets hfii
processed by nodes during a certain time interval, and the
standard deviation �i of this quantity. They find that there
are two classes of universality in this relationship for real
systems. In the Internet, � scales as hfi1=2, whereas �
scales as hfi for the World Wide Web and highway net-
works. Based on a stylized model of random walkers
throughout the network, they conclude that this difference
is due to the fact that the dynamics of the Internet is
dominated by ‘‘internal noise’’ whereas the dynamics of
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the World Wide Web and highway networks is dominated
by the demands of users, that is ‘‘external noise.’’ In the
abstraction process proposed by the authors, they overlook
what is probably one of the most important factors in the
dynamics of traffic on networks—the limited capacity of
nodes to handle packets simultaneously, which results in
packet-packet interactions and, eventually, in large fluctu-
ations or even network congestion [2,3].

In this Letter we show that simple considerations regard-
ing the persistence of packets flowing the network, the
limitation of nodes to handle information, and the time
window where statistics are performed, account for differ-
ent scalings of the fluctuations in traffic on complex net-
works. The main results obtained are: (i) Maintaining the
total traffic on the network constant, different scaling laws
arise depending on the relation between the input ratio of
packets and the steps these packets perform before they
disappear. (ii) The time window affects the scaling expo-
nent of the fluctuations in such a way that, for a small
enough time window, the scaling trivially satisfies ��
hfi1=2 always, no matter the dynamic process. When the
time window is large enough, the rest of parameters will
provide the precise scaling between � � 1=2 and � � 1
where � refers to the scaling exponent �� hfi�. (iii) The
effect of the packet-packet interaction (queue system) ac-
counts for different scaling exponents as well. (iv) We find
that within this framework there is not enough evidence for
deriving universality classes. We have checked the scaling
for data flowing on the Abilene backbone network, and
show that the scaling exponent is different from 1=2.

To understand the origin of the scaling relations for the
fluctuations in networks, let us consider the behavior of a
single node—for example, a toll plaza in a highway—
trying to satisfy demands from users—vehicles arriving to
the toll. As we learn from queueing theory [15], two
stochastic processes fully determine the behavior of the
node: (i) the arrival process by which new packets arrive to
the node, and (ii) the service process by which the node
satisfies the demands of the users, that is, forwards the
2-1 © 2006 The American Physical Society
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FIG. 1 (color online). Value of the exponent � versus the time
window length P in which averages are performed, for a fixed
�ef
� � 1=3 and different values of the persistence of packets in

the network S. The shadowed area highlights the region of P in
which the exponent � � 1=2 always appears. The simulation is
performed in a scale-free network with exponent for the degree
distribution � � 3 of 1000 nodes [24]. We have observed the
same results for larger scale free networks at a subset of values of
P, however the computational cost for the whole set of P values
used in the plot becomes prohibitive.
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packets. The most common queue model corresponds to
theM=M=1 queueing system, where the randomness of the
packets’ generation assumes a random (Poisson) arrival
pattern [16] and the service distribution assumes a random
(exponential) time [18].

Taking into account these considerations, we propose to
model the traffic process in a complex network of N nodes
as N queue systems of type M=M=1, and a random walk
simulation for the movement of packets on the network.
The arrival process of packets to the network is controlled
by a Poisson distribution with parameter �, each packet
enters the network at a random selected node. Once the
packet arrives to the node enters a queue. The delivery of
the packets in the queue is controlled by an exponential
distribution of service times with parameter �. In our
model, the packets will perform S random steps in the
network before disappearing, S then being a measure of
the persistence of packets in the network. This dynamics is
performed in continuous time, assuming that the time
expended by packets traveling through a link is negligible.

The system achieves a stationary state whenever the
arrival rate of packets at each node is lower than or equal
to the delivery rate, otherwise the system congests. The
arrival rate at each node i is dependent on the topology and
follows a distribution whose mean is �ef

i � Bi�, where Bi
is the algorithmic betweenness of node i. Bi is defined as
the relative number of paths in the network that go through
node i given a specific routing algorithm [2]. As a direct
consequence, the node with maximum algorithmic betwe-
enness B� determines the onset of congestion. We will
focus on the average number of packets hfii processed by
nodes during a certain time window of length P, and the
standard deviation �i of this quantity.

Selecting a value of P� 1=�ef
� � 1=�B���, we will

always observe the scaling �� hfi1=2, regardless of other
parameters. Because of the value of P selected, the nodes
will deliver either one packet or none, at each time interval.
Suppose that during a number n1 of intervals of length P
the node deliver a packet whereas it does not deliver during
a number of intervals n0 � n� n1, where n is the number
of samples for the statistics. In this situation we also have
n0 � n1. Therefore, the average and the standard devia-
tion read

hfi � n1=n; ��
�

1

n
	n1�1�hfi�2
 n0hfi2�

�
1=2
; (1)

which can be simplified to

� � 	�1� hfi�hfi�1=2: (2)

But, in the current scenario, the average flow is hfi � 1
and then we recover the �� hfi1=2 scaling law. Otherwise,
this argument cannot be applied, and the scaling value will
be influenced by the rest of parameters of the model.

In Fig. 1 we show the behavior of the scaling exponent �
as a function of the time window length P in which the
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averages were taken, for a fixed �ef
� � 1=3. We observe

(shadowed area) that the exponent is always 1=2 when the
interval length is small enough. Indeed, from the data used
the exponent 1=2 stands for values of P & 0:01=�ef

� .
Let us now assume that the sampling of the data is

performed at intervals of length P� 1=�ef
� . In this case,

we expect the scaling of fluctuations in the system, beyond
the effect of the sampling process, to be revealed. We
analyze the behavior of the system varying the rate of
injection of packets into the system � and the number of
steps S each packet performs before it disappears. We first
consider that the service rate �! 1. In this case, the
effect of queues is minimized and then no interaction
between packets is accounted for. The total traffic T ,
number of packets flowing through the network per unit
time, is determined by the Poisson process with mean
hT i � �S.

Keeping the total traffic mean hT i fixed, we can control
the variability of the local traffic incoming to a node by
varying the values of � and S proportionally. In Fig. 2 we
show the scaling exponent transition between � � 1=2 and
� � 1. This plot recovers the results depicted in [13],
although the explanation should be reconsidered in the
new scenario. The transition of exponent from � � 1=2
to � � 1 is obtained here simply by increasing the number
of steps S the packet performs on the network while
maintaining the mean value of the total traffic (i.e., de-
creasing proportionally the injection ratio �). This contra-
dicts the interpretation in [13] because increasing the
number of steps in the network increases the internal
fluctuations of traffic because more packet-packet interac-
2-2
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FIG. 3 (color online). Scaling exponent � as a function of the
time service �, for three different time window lengths, and for
�ef
� � 1=3. Shadowed area highlights the region where conges-

tion starts at nodes with �ef
� � 1=3.
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FIG. 2 (color online). Left: Plot � versus hfi for different
realizations of � and S maintaining its product constant. The
simulation is performed in a scale-free network with exponent
for the degree distribution � � 3 of 1000 nodes [24]. We fixed
T � �S � 100. Right: Plot of the � exponent for �S � 100.
Other values of �S have produced equivalent results, shifted to a
different region of hfi.
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tion occurs, while decreasing the injection of packets
(remember, Poisson distributed) decrements the external
fluctuations of traffic in this scenario. Nevertheless both
results are coherent at this point concerning the scaling of
fluctuations. Our interpretation of this transition is the
following: for the same total traffic on the network, the
nature of fluctuations is related to the number of steps S the
packets perform on the network. When the number of steps
is small enough the behavior of fluctuations is akin to a
random deposition process independent of the topology of
the network, �ef

i � �. When the number of steps in the
network grows, the topology induces dynamical correla-
tions that affect the scaling of fluctuations via the algorith-
mic betweenness, �ef

i � �Bi.
We extend the simple model where queues are ne-

glected, to the more realistic situation when queues are
persistent. The introduction of queues in the system, in our
model, is controlled by the parameter � (rate of service).
The possible values of � are constrained by the onset of
congestion, i.e., �> �ef

� , otherwise congestion appears at
those nodes with B�, because of the arrival of more packets
than those that can be delivered. We investigate those
values of� near the onset of congestion to reveal the effect
of queues in the scaling properties of the system. When
congestion occurs, the queues corresponding to those
nodes with B� will always have more packets that those
than can be delivered in a period P. That means that the
number of packets delivered by these nodes will be con-
trolled exclusively by the service rate �, i.e., the variance
scaling with respect to the mean flow at these nodes will be
again fitted by � � 1=2 corresponding to the exponential
service distribution. Close to the onset of congestion we
approach the situation where the scaling exponent � �
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1=2 should be recovered, however the possibility that in
some periods of time the queues will be unoccupied in-
creases as we go away from the congested regime, thus a
new transition in the scaling exponent as a function � is
expected. In Fig. 3 we plot the scaling exponent transition
as a function of � for a fixed value of �ef

� � 1=3. In this
situation the onset of congestion is determined by the
critical value �c � 1=3. Note that for values below �c
some nodes of the network collapse and then gradually
collapse the rest of the nodes in the network. In this region,
shadowed area of Fig. 3 the system enters the congestion
regime progressively. The transition on the scaling expo-
nent depicted in Fig. 3 is also affected by the time window
length P, we plotted the transition for P � 102, 103, and
104. We observe that as P increases, the transition becomes
sharper. Indeed in the limit of P! 1 we conjecture that
the transition could be discontinuous, and could reflect a
first order phase transition [20] as observed in other traffic
models [21], although we cannot claim that this disconti-
nuity will occur sharply from 1 to 1=2.

Up to now, we have shown that a simple traffic model
where the injection of packets to the system follows a
Poisson distribution can account for different scaling ex-
ponents � depending on the parameters �, �, S, and the
time period P were the statistics are performed. These
results lead us to suspect that the scaling of fluctuations
in real systems must be affected by these parameters as
well. This cast doubts on the universality predicted in [13].
Indeed, this nonuniversality has been also claimed in the
exponent of fluctuations when studying the data flow be-
tween stocks in NYSE market [22]. To corroborate our
doubts about universality on the scaling of fluctuations in
complex networks, we have studied the Internet traffic
between routers of the Abilene backbone network [23]
that are part of the data also used in [13]. We collected
data from the 112 available router interfaces (links). We
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FIG. 4. Scaling relations between � and hfi for the 112
Abilene backbone router Interfaces. Analysis performed during
(a) 2 days, (b) 1 week, (c) 1 month, and (d) 2 months, finishing
all of them in November 15th of 2005. The time window length
P is fixed to 5 min.
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gathered information of the number of packets that exited
through each router interface between September 15th and
November 15th of 2005, at intervals of 5 min. The scaling
�� hfi� shows exponents that range from � � 0:71 to
� � 0:86, see Fig. 4, significantly different from the ex-
ponent 1=2 presented in [13]. The interpretation of these
exponents in the context of our stylized model is that the
Abilene backbone is far from the onset of congestion for
the interface with maximum algorithmic betweenness, and
seems compatible with the mean rate of utilization of the
interfaces in this backbone that is usually below 30%.

Summarizing, we have presented a simple model of
traffic in complex networks that capture the essential pa-
rameters governing the dynamical process. The model
shows a scaling relationship between � and hfi whose
exponent depends on the parameters considered as well
as on the time window in which the statistics are per-
formed. Moreover, we have shown that the corresponding
exponent for the scaling of fluctuations in the Internet
Abilene backbone network is different from 1=2 as stated
in previous works, corroborating by exclusion that the
universality on the scaling of fluctuations in complex net-
works should be questioned.
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