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Scale-Free Network Growth by Ranking
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Network growth is currently explained through mechanisms that rely on node prestige measures, such
as degree or fitness. In many real networks, those who create and connect nodes do not know the prestige
values of existing nodes but only their ranking by prestige. We propose a criterion of network growth that
explicitly relies on the ranking of the nodes according to any prestige measure, be it topological or not.
The resulting network has a scale-free degree distribution when the probability to link a target node is any
power-law function of its rank, even when one has only partial information of node ranks. Our criterion
may explain the frequency and robustness of scale-free degree distributions in real networks, as illustrated
by the special case of the Web graph.
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Scholars have become interested in the many complex
networks with long-tailed degree distribution [1–3] due to
their peculiar structural features such as resilience [4] and
to the critical dynamical processes taking place on these
networks, including epidemics spreading [5], search [6],
and opinion formation [7]. The most popular explanation
for the origin of scale-free networks is preferential attach-
ment [8], according to which a newly created node is
connected to a preexisting one with a probability exactly
proportional to the number of links (degree) of the target
node. This mechanism embodies the intuitive idea of a
‘‘rich get richer’’ dynamics. In the limit of infinitely
many nodes, the degree distribution of the resulting net-
work has a power-law tail with exponent � � 3. Prefer-
ential attachment has been explicitly or implicitly embod-
ied in many successive models of network growth [9,10].

Krapivsky, Redner, and Leyvraz [11] showed that the
proportionality between linking probability and the target
node degree is a necessary ingredient of preferential at-
tachment; if the linking probability is a power of the degree
with exponent �, the resulting network has a power-law
degree distribution only when � � 1. For �< 1, the de-
gree distribution is a power law multiplied by a stretched
exponential, and, for larger values of �, the model yields
starlike networks. This seems at odds with the abundance
and robustness of scale-free degree distributions in real
networks. Other proposed mechanisms do not rely on
preferential attachment. If the attraction of links depends
on some ‘‘fitness’’ property of the target node, the networks
display scale-free degree distributions for some suitable
choices of the fitness distribution [12,13].

Whether the link attractiveness of a node depends on a
prestige measure exogenous or endogenous to the network
topology, this information may not be available in real
cases. In a social network, for example, we could assume
that the probability for a person to make new friends is
proportional to properties such as popularity, attractive-
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ness, or wealth—all typically difficult for strangers to
quantify, measure, or discover.

While the absolute importance of an object is often
unknown, it is quite common to have a clear idea about
the relative values of two objects. One can often say who is
the richer or more popular between two individuals. As
another example, search engine users only see how Web
pages are ranked. The perception of how items are ranked
requires far less information than their actual importance.
Here we propose a model of network growth that focuses
on the relative rather than absolute importance of the
nodes, which are ranked according to an arbitrary prestige
measure. We show that scale-free networks emerge for a
very general form of the linking probability and are stable
for a large range of the parameters describing the growth.
The result holds even if new nodes have information on
only subsets of older nodes.

First, a prestige ranking criterion is selected. At the �t�
1�th iteration, the new node t� 1 is created and new links
are set from it tom preexisting nodes. The previous t nodes
are ranked according to prestige, and the linking probabil-
ity p�t� 1! j� that node t� 1 be connected to node j
depends only on the rank Rj of j:

p�t� 1! j� �
R��jPt
k�1 R

��
k

; (1)

where �> 0 is a real-valued parameter. The linking proba-
bility clearly decreases with increasing rank.

The choice of prestige measure is arbitrary. We discuss
both topological measures (age t and degree k) and exog-
enous ones (any node fitness �).

If the nodes are sorted by age, from the oldest to the
newest, the label of each node coincides with its rank, i.e.,
Rt � t 8 t. In this special case, our linking probability
coincides with that of the so-called static network model
[14]. We can calculate the number of links that the Rth
node will attract since its creation. Suppose that the evo-
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FIG. 1 (color online). Inset: In-degree distributions for net-
works built according to our model (ranking by degree). The
number of nodes is N � 106. Data are averaged within logarith-
mic bins of degree and shifted along the y axis for illustration
purposes. The main curve plots the degree distribution exponent
� as a function of �, from simulations with nodes ranked by
various criteria. Error bars represent standard errors on the best
fit estimates of �, while the dashed line is the prediction of
Eq. (4).
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lution of the network stops when N nodes are created. At
each iteration, a constant number m of links are created
between the new node and the older ones. The expected
total number kNR of links that the Rth node has attracted at
the end is

kNR �
XN

t�R�1

mR��Pt
j�1 j

�� : (2)

The first sum runs over N � R terms because N � R nodes
are created after node R, and each of them can be con-
nected to R. We now approximate the sums with integrals
and assume that N � R, as we are ultimately interested in
the thermodynamic limit. We find that kNR � AR��, where
A is a function ofN,�, andm. Knowing kNR , it is possible to
find how many nodes Nk have the same expected number
of links k. The ratio Nk=N in the limit of large N yields the
probability p�k;N� that a node of the network has degree k:

p�k;N� � k��1�1=��: (3)

Equation (3) shows that the degree distribution of the net-
work follows a power law with exponent

� � 1� 1=� (4)

for any value of �. Since � can take any value greater than
1, we can, in principle, reproduce the exponents measured
in real systems. For �> 1 (� < 2), a few nodes attract a
finite fraction of all links (condensation); in the limit case
in which the power law of Eq. (1) is replaced by a simple
exponential, the network still has a long-tailed degree
distribution with � � 1 (as in the limit �! 1).

Let us now consider a more realistic ranking criterion,
the in-degree. The number of incoming links of a node
represents how many times the node has been selected by
its peers. For undirected networks, we can equivalently use
the degree. Nodes with (in-)degree zero, which if present
are a problem for the extension of other growth models to
directed networks, do not raise an issue here because they
have ranks expressed by positive numbers, like all other
nodes.

To see what kind of networks emerge with this new
prestige measure, we cannot apply the above derivation
because the degree-based ranking of a node can change
over time. On the other hand, for a growing network there
is a strong correlation between the age of a node and its
degree, as older nodes have more chances to receive links.
Furthermore, the ranking of nodes according to degree is
quite stable [15]. Therefore, we expect the same result as
for the ranking by age.

To verify our expectation, we performed Monte Carlo
simulations of the network growth process with the new
degree-based ranking strategy. The inset in Fig. 1 shows
the degree distributions of four networks, corresponding to
various values of the exponent �. In the logarithmic scale
of the plot. the tails appear as straight lines, as one would
expect for scale-free distributions. To verify that the rela-
tion between � and the exponent � of the degree distribu-
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tion is the one predicted by our model, in the main plot in
Fig. 1 we compare various pairs ��; �� with the hyperbola
of Eq. (4). The agreement is evident.

A striking feature of our model is that it generates scale-
free networks even when ranking nodes by a prestige
measure unrelated to the network topology, i.e., by some
exogenous fitness attribute of the nodes. Suppose we assign
a fitness � to the nodes according to an arbitrary distribu-
tion. Let Rj�t� be the expected rank of node j, with fitness
�j, among t nodes. As Rj�t� is asymptotically proportional
to t, we can write Rj�t� � t���j�, where the relative rank
���j� depends only on �j. By replacing the rank in the
linking probability of Eq. (1) by the expression t���j�, we
can factor out t�� from both the numerator and the de-
nominator, leading us back to the case of static ranking
discussed above.

Monte Carlo simulations confirm the result. We used
uniform, exponential, and power-law fitness distributions.
The resulting networks have degree distributions with
power-law tails, for any value of � and any fitness distri-
bution. The relation between the exponents � and � is in
agreement with the prediction of Eq. (4) in all cases. In
Fig. 1, we illustrate this relation for the uniform and expo-
nential cases.

Most models of network growth assume that a new node
can be linked to any existing node, chosen according to
some criterion. This requires that the new node be aware of
the status of all its peers. Such an assumption of complete
knowledge of the network may not be realistic. For in-
stance, in a large social network nobody knows everybody
else. It is reasonable to suppose that the knowledge that
1-2
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each node has of the network is limited to a sample of
nodes, which is, in general, different from node to node. In
the previous example, each person has his or her own group
of acquaintances. Having access only to portions of a net-
work can profoundly affect the dynamics of network
growth. Mossa et al. [16] showed that preferential attach-
ment would yield power-law degree distributions ending
with exponential cutoffs.

Let us check whether and to what extent the hypothesis
of limited information affects the dynamics of the rank-
driven model proposed here. We assume that, whenever a
new node is created, it can ‘‘see’’ each of the preexisting
nodes with a probability h. We shall see that, if h is
constant, our earlier result holds; if h is power-law distrib-
uted, the scenario is more complex, but one recovers long-
tailed degree distributions in most cases.

If h is constant, the size distribution of the subsets
accessed by the new nodes is a binomial peaked at ht,
where t is the number of nodes of the network after t
iterations. This means that most subsets will have a size
of about ht. Let us assume that the nodes are ranked
according to their age, making a formal analysis possible.
The linking probability is still given by Eq. (1), with the
important caveat that now we deal only with the nodes
within the subset accessed by the newly created node. So
the ranks of Eq. (1) refer to the ordering of the nodes of the
subset, not of all nodes like before. Let us indicate the
‘‘local’’ ranks with r, to distinguish them from the global
ranks R we have dealt with so far.

When a new node t� 1 is created, it knows a list
of n older nodes. One can calculate the probability
p�R; r; t; n; h� that node R has local rank r within this list
and from this the probability p�t� 1! R; r; n; h� that
such a node be linked to t� 1. Then we sum over the
possible ranks r of node R in the list (r 2 1 . . . n) and all
possible subset sizes (n 2 1 . . . t). The result yields the
linking probability p�t� 1! R; h� of t� 1 to R:

p�t� 1! R; h�

�
Xt
n�1

Xn
r�1

hn�1� h�t�nr��Pn
m�1 m

��
R� 1
r� 1

� �
t� R
n� r

� �
:

(5)

From Eq. (5), we see that if h � 1, which corresponds to a
list with all t nodes, one recovers Eq. (1) as expected. For
h < 1, however, it is not possible to derive a close expres-
sion for p�t� 1! R; h�, so we performed Monte Carlo
simulations of the process leading to Eq. (5). In every
simulation, we produced a large number of lists, each
formed by sampling nodes with probability h. At the
beginning of the simulation, we initialized all entries of
the array p�t� 1! R; h� � 0. Once a list was completed,
we added to the entries of p�t� 1! R; h�, corresponding
to the nodes of the list, the linking probability as given by
Eq. (1) (with the proper normalization). With this method,
we simulated systems with up to N � 106 nodes.
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For t not too small, p�t� 1! R; h� is well approxi-
mated by the following function:

p�t� 1! R; h� �

8<
:

���1�h�

�h��1�t1��
if 1 � R � 	1h
;

���1�R��

�h��1�t1�� if 	1h
 � R � t:
(6)

The first 	1h
 nodes have the same probability of being
selected. For the other nodes, p�t� 1! R; h� has the
same dependence on R as in the case in which there is
complete information on the network (h � 1). This means
that, in a network grown with the linking probability of
Eq. (5), the first 	1h
 nodes will have approximately the same
number of links, whereas the degrees of the others will
have the distribution of Eq. (3). If h is independent of N,
the subset of equiprobable nodes does not grow with N and
has no structural relevance when N ! 1; if h� 1=N, the
subset of equiprobable nodes is a fraction of the network
and the degree distribution has an exponential cutoff.
Monte Carlo simulations confirmed the result. We con-
clude that the degree distribution of networks grown with
our ranking strategy is the same whether new nodes have
access to the full network or just to subsets of it, as long as
the subsets contain a constant proportion of the network
nodes. The latter assumption may not be realistic, as the
number of contacts may vary appreciably from node to
node. Next we extend our analysis to this case.

In general, if h is distributed according to a function
S�h�, we need to convolute the p�t� 1! R; h� of Eq. (5)
with S�h� to get the linking probability pS�t� 1! R� of
the full process

pS�t� 1! R� �
Z hM

hm
S�h�p�t� 1! R; h�dh; (7)

where hm and hM are the extremes of the interval where
S�h� is defined. We consider the following simple proba-
bility distribution for h:

S�h� �
�� 1

t��1 � 1
h��; (8)

where �> 0. The function is defined in the range h 2
	1=t; 1
. In fact, for a network with t nodes, in order to have
at least one item in a random selection of nodes, one needs
a probability h � 1=t. The prefactor ensures the normal-
ization of the function in the interval 	1=t; 1
. As we
discuss later, the choice of the power law in Eq. (8) is a
realistic one; it also accounts for the two limit cases of
uniform (� � 0) and exponential (�! 1) distributions;
finally, it allows us to treat the problem analytically, pro-
vided we introduce reasonable approximations.

We plug Eqs. (6) and (8) into Eq. (7). With R fixed, we
split the integral over the two h domains corresponding to
the regimes of Eq. (6). Depending on the values of the
parameters � and �, we can neglect different terms in the
resulting integrands, leading to four cases for the asymp-
totic dependence of the linking probability on rank.
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FIG. 2 (color online). Degree distributions for networks grown
according to the proposed model, with incomplete information.
Inset: Regions of the parameter space for the four regime cases.
The marked points correspond to the ��;�� values that generate
the distributions in the main plot.

PRL 96, 218701 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
2 JUNE 2006
In three of the cases, pS�t� 1! R� has a power-law
dependence on R: The networks grown for the correspond-
ing values of � and � will then have scale-free degree
distributions. The power-law distribution of the probability
h affects the value of the exponent � of the degree distri-
bution, which no longer depends only on � and in one case
is only a function of �. In the last case, the linking
probability is independent of the rank, so all nodes have
the same chance of being linked and the degree distribution
is exponential. The four cases correspond to regions of the
��;�� parameter quadrant (Fig. 2 inset). In cases a, b, and
c, p�k� � k��, with �a � 1� 1=�2� ��, �b � 1� 1=�,
and �c � 1� 1=�1� �� ��. In case d, p�k� is exponen-
tial. Monte Carlo simulations confirm these predictions, as
shown in Fig. 2. The results are identical if the nodes are
ranked according to degree or fitness.

Compared to mechanisms proposed in the past to ex-
plain the emergence of scale-free networks, the rank-based
model introduced here presents three main advantages.
First, it assumes less information is available to nodes (or
node creators); it seems more realistic in many real cases to
imagine that the relative importance of items is easier to
access than their absolute importance. Second, the link
attractiveness of nodes is by no means restricted to topol-
ogy; it can depend on exogenous attributes of the nodes,
which makes our model suitable for applications in many
different contexts. Third, the criterion is more robust in
that: (i) it naturally extends to directed networks; (ii) it
leads to long-tailed degree distributions for a broad class of
linking probability functions—namely, power laws of rank
with any exponent �> 0, including the degenerate expo-
nential case for �! 1; and (iii) the scale-free degree
distribution generated by the model is not affected by
limiting the information available to subsets of nodes.

The rank-based model is directly applicable to the Web
as a special case, if one considers the role of search engines
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in the discovery of pages [17]. When a user submits a
query, the search engine ranks the results by various crite-
ria including a topological prestige measure, PageRank,
closely correlated with in-degree. Users do not know the
PageRank of the search hits but observe their ranking and,
thus, are more likely to discover and link pages that are
ranked near the top. By analyzing search engine logs, one
finds that (i) users click on result hits with a probability that
is a power-law function of rank matching Eq. (1), with� �
1:6; and (ii) user queries return hit sets whose size distri-
bution matches the power law in Eq. (8), with � � 1:1.
Assuming that users tend to link pages that they discover
by searching, and that they are aware only of the pages
returned by search engines in response to their queries, our
model predicts a scale-free distribution of in-degree with
exponent �a � 2:1 (cf. case a and curve marked with
circles in Fig. 2). This is in perfect agreement with estab-
lished Web measurements [4].
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