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We study the relative fluctuations of the link overlap and the square standard overlap in the three-
dimensional Gaussian Edwards-Anderson model with zero external field. We first analyze the correlation
coefficient and find that the two quantities are uncorrelated above the critical temperature. Below the
critical temperature we find that the link overlap has vanishing fluctuations for fixed values of the square
standard overlap and large volumes. Our data show that the conditional variance scales to zero in the
thermodynamic limit. This implies that, if one of the two random variables tends to a trivial one (i.e.,
deltalike distributed), then the other does also, and as a consequence, the “trivial-nontrivial” picture
should be dismissed. Our results show that the two overlaps are completely equivalent in the description of
the low temperature phase of the Edwards-Anderson model.
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The low-temperature phase of short-range spin glasses is
among the most unsettled problems in condensed matter
physics [1,2]. To study its nature an order parameter was
originally proposed by Edwards and Anderson [3], the
disorder average of the local squared magnetization
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which coincides with the quenched expectation of the local
standard overlap of two spin configurations drawn accord-
ing to two copies of the equilibrium state carrying identical
disorder
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The previous parameter should reveal the presence of
frozen spins in random directions at low temperatures.
While that choice of the local observable is quite natural,
it is far from unique; one can consider, for instance, the two
point function Av(w7,). In the case of the nearest-neighbor
correlation function this yields the quenched average of the
local link overlap.

When summed over the whole volume, the link overlap
and the standard overlap give rise to a priori different
global order parameters. In the mean-field case the two
have a very simple relation: In the Sherrington-Kirkpatrick
(SK) model, for instance, it turns out that the link overlap
coincides with the square power of the standard overlap up
to thermodynamically irrelevant terms. But in general, es-
pecially in the finite dimensional case of nearest-neighbor
interaction like the Edwards-Anderson (EA) model, the
two previous quantities have a different behavior with
respect to spin flips: when summed over regions the first
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undergoes changes of volume sizes after spin flips, while
the second is affected only by surface terms.

From the mathematical point of view, their role is also
quite different. The square of the standard overlap repre-
sents, in fact, the covariance of the Hamiltonian function
for the SK model, while the link overlap is the covariance
for the EA model. Two different overlap definitions are
naturally related to two different notions of distance among
spin configurations. It is an interesting question to establish
if two distances are equivalent for the equilibrium measure
in the large volume limit and, if yes, to what extent (see [4]
for a broad discussion on overlap equivalence and its
relation with ultrametricity). They could in fact be simply
equivalent in preserving neighborhoods (topological
equivalence), or they could preserve order among distances
(metric equivalence). The a priori different properties of
the two overlaps have also been discussed in relation to the
different pictures [droplet [5], mean field [1], and trivial
nontrivial (TNT) [6,7]] that have been proposed to de-
scribe the nature of the low-temperature spin-glass state. In
this respect, the distributions of the two overlaps are ex-
pected to be deltalike (trivial distribution, droplet theory),
to have support on a finite interval (nontrivial distribution,
mean-field theory), or to have different behavior depending
on which overlap is considered (trivial link-overlap distri-
bution, nontrivial standard-overlap distribution, TNT
theory).

In this Letter we consider the EA model in d = 3, with
Gaussian couplings and zero external magnetic field in
periodic boundary conditions. We study the relative fluc-
tuations of the link overlap with respect to the square of
standard overlap. We use the parallel tempering (PT) al-
gorithm to investigate lattice sizes from L = 3 to L = 12.
For every size, we simulate at least 2048 disorder realiza-
tions. For the larger sizes we used 37 temperature values in
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the range 0.5 = T = 2.3. The choice of the lowest tem-
perature is related to the possibility to thermalize the large
sizes, but our results are perfectly compatible with those
obtained by Marinari and Parisi [8] at T = 0 (see the last
paragraph before the conclusions). The thermalization in
the PT procedure is tested by checking the symmetry of the
probability distribution for the standard overlap ¢ under the
transformation ¢ — —¢q. Moreover, for the Gaussian cou-
pling case, another thermalization test is available: the
internal energy can be calculated as both the temporal
mean of the Hamiltonian and—by exploiting integration
by parts—the expectation of a simple function of the link
overlap [9]. We checked that with our thermalization steps
both measurements converge to the same value. All the
parameters used in the simulations are reported in Table I.

We recall the basic definitions. For a three-dimensional
lattice A of volume N = L3, the square of the standard
overlap among two spin configurations o, 7 € {+1, — 1}V
is

g*(o,7) = (;,foﬂ'i)z- (3

The link overlap is instead obtained from the nearest-
neighbor spins, namely, for b = (i, j) with i, j € A,
li—jl=1,and o, = 0,0,

1
Q(O',T)=W§_Ub7b- 4

First, we investigate the behavior of the correlation coef-
ficient between ¢> and Q,

o= (¢ —(NQ—(0))
V(@ = (N2 — ()%

This quantity will tell us in which range of temperatures
the two random variables are correlated. In that range we
further investigate the nature of the mutual correlation by
studying their joint distribution and, in particular, the con-
ditional distribution P(Q|g?) of Q at fixed values of g>. We
are interested in understanding if a functional relation
among the two quantities exists, i.e., if the variance of
the conditional distribution shrinks to zero at large volumes

&)

TABLE I. Parameters of the simulations: system size, number
of sweeps used for thermalization, number of sweeps for mea-
surement of the observables, number of disorder realizations
(Nreal), number of temperature values allowed in the PT proce-
dure, temperature increment, and minimum and maximum tem-
perature values.

L Thermalization Equilibrium Nreal ng 6T Tpin Tmax

3-6 50000 50000 2048 19 01 05 23
8 50000 50000 2680 19 0.1 05 23
10 70000 70000 2048 37 005 05 23
12 70000 70000 2048 37 005 05 23

and around what curve the conditional distribution is
peaked. We have

2
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For this conditional distribution one could compute the
generic kth moment

Gilg®) = EQlg?) = [ 0*Polgrde. ()

We are interested in the mean

G(q*) == Gi(¢*) = E(Qlg?) ®)
and the variance
Var (Qlg?) = Gy(¢*) — G3(g?). ©)

The method of the least squares immediately entails that
the mean G(g?) is the best estimator for the functional
dependence of Q in terms of g?. In fact, given any function
h(g?), the mean of [Q — h(g?)]* according to the joint
distribution P(Q, ¢%) is >0 — h(q?)]zP(Qi, q?) =
> P[0 — h(g))FPP(Qilg7), where the sums run
over all possible values of the random vector (Q, ¢°),
which are finitely many on the finite system we simulated.
Therefore, to minimize the mean, it suffices to minimize
the inner sum, i.e., to choose 4(g?) as the mean G(g?) of Q
with respect to the conditional distribution (6).

The scaling properties of the conditional variance (9)
and the functional dependence (8) provide important in-
formation about the low-temperature phase of the model.
Indeed, a vanishing variance in the thermodynamic limit
implies that the two random variables Q and ¢> do not
fluctuate with respect to each other. If the functional de-
pendence G(g?) among the two is a one-to-one increasing
function, then it follows that the marginal probability dis-
tributions for the standard and link overlap must have
similar properties. In particular, if one of the two is sup-
ported over a point, then the other must be so too.

We now describe our results. Figure 1 shows the corre-
lation between the square standard overlap and the link
overlap. The plot of Eq. (5) is done for different sizes of the
system as a function of the temperature. It is clear from the
figure that, as the system size increases, the correlation
remains strong in the low-temperature region, while it
becomes weaker in the high-temperature region. A sudden
change in the infinite volume behavior of p can be ex-
pected to occur close to the critical temperature 7', of the
model. The best estimate available in the literature—ob-
tained through the analysis of the Binder parameter’s
curves of the variable g? for different system sizes—gives
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FIG. 1 (color online). p;(T) as a function of the temperature 7
for different sizes L of the system.

T, = 0.95 £ 0.04 [10] (we independently reproduced this
estimate with our data for g> and obtained an estimate of
T, =0.95 = 0.03).

For each temperature, we did a fit of the data for p to the
infinite volume limit. We tried different scaling for the
data, both exponential p; (T) = pu(T) + a(T)e?E and
power law p; (T) = po(T) + a(T)LPT). The interesting
information is contained in the asymptotic value p. (7).
We measured the normalized x> for different values of
Poo(T) in the range [0, min; p, (T)], keeping a(T) and b(T)
[or «(T) and B(T)] as free parameters. In the region T =
1.0, we found that y? attains this minimal value for
Po(T) = 0.For T = 0.9 the y? develops a sharp minimum
corresponding to values p(T) # 0. The whole plot of the
curve p.(7T) as obtained from the best fit is represented in
Fig. 2. Also, in the inset of the same figure the standard
finite size scaling of the data is shown. We plot p, (T)L¥/”

0.9F

0.8f

0.7r

0.6

)
p MLYY
o
(]
T

E 05F

0.4r

0.3r

0.2f

0.1

T

FIG. 2 (color online). p(7T) as a function of the temperature
T. The finite size scaling is shown in the inset.

versus the scaling variable (T’ — T,)L'/”. A good scaling
plot is obtained using 7, = 0.95, » =0.71, and ¢ =
0.038. The discrepancy between the value v = 2.0 of
Ref. [10] has to be attributed to the nonlinear relation
between Q and ¢ (see below). Figure 2 tells us that in
the high-temperature phase the two random variables stan-
dard and link overlaps are asymptotically uncorrelated,
while in the low-temperature one they display a nonvan-
ishing correlation: within our available discrete set of
temperature values, the temperature at which the correla-
tion coefficient starts to be different from zero is in good
agreement with the estimated critical value of the model.

We consider then the problem of studying the functional
dependence (if any) between the two random variables Q
and ¢ in the low-temperature region. The points in Fig. 3
show the function G(g?) of Eq. (8) for different system
sizes at T = (.5, well below the critical temperature. Also,
we studied a third order approximation of the form Q =
g(g?) = a + bg* + cq* + dg®. Since we must have Q =
1 for g> = 1, this actually impliesd = 1 — a — b — c. The
coefficients ay, r, by 7, ¢y r have been obtained by the least
square method and then fitted to the infinite volume limit.
The result is shown as continuous lines in Fig. 3. The good
superposition of the curves to the data for G(g?) indicates
that the functional dependence between the two overlaps is
well approximated already at the third order.

Finally, we measured the variance Eq. (9) at low tem-
peratures. We observed that the distribution is concentrat-
ing for large volumes around its mean value. The trend
toward a vanishing variance for infinite system sizes is very
clear. We analyzed all temperatures below 7., and we
found that the best fit of Var,(Q|g?), in terms of the y?,
is obtained by a power law of the form a(T)L %" + ¢,
which gives ¢ = 0 for every value of the temperature. For
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FIG. 3 (color online). Plot of the curves g(g®) (continuous
lines) and of G(g?) (dotted lines) together with the infinite
volume limit curve g.,(¢?) (upper continuous line) for 7 = 0.5.
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FIG. 4 (color online). L'*3Var;(Q|q?) as a function of ¢ for
temperature 7 = 0.5 and for different sizes L.

the lowest available temperature T = 0.5, this is shown in
Fig. 4 where we plot the data for Var,(Q|g?)L'* for
different system sizes L: all the different curves collapse
to a single one. The data for other temperature values
behave similarly, the only difference being that the coeffi-
cient b(T) is increasing with the temperature (it stays in the
range [1.43, 1.74] for T € [0.5, 0.9]). This result has quite
strong consequences because it says that the two random
variables Q and ¢ cannot have different triviality proper-
ties: if one of them is trivial (deltalike distributed), the
scaling law for their conditional variance implies that the
other is also trivial. Our result then rules out the possibility
to have a nontrivial standard overlap with a trivial link
overlap as predicted, for instance, in the so-called TNT
picture [6,7].

It is interesting to compare our result with previous
works. Marinari and Parisi [8] have studied the relation
0 =[1—-A(L)]+[AL) — B(L)]g> + B(L)g* among the
two overlaps at zero temperature, by ground state pertur-
bation. We have extrapolated our data in the low-
temperature regime to zero temperature by a polynomial
fit and then to the infinite volume limit (L = o). The best
fit for L = oo (i.e., the one with smaller y?) is quadratic in
L' It gives A = 0.30 = 0.05 (x*> = 0.21), which is in
agreement with the independent measure of Marinari and
Parisi (A = 0.30 = 0.01, y> = 0.6). Note that their results
are obtained with a complete different method than
Monte Carlo simulations, namely, exact ground states.

Sourlas [11] studied the same problem in a different setting
called the soft constraint model. Although a direct quanti-
tative comparison is not possible with our method, his
results are qualitatively similar. In the context of out-of-
equilibrium dynamics, a strong correlation between the
link overlap and the standard overlap in the low-
temperature phase was pointed out in Ref. [12].

In conclusion, our result shows quite clearly that, within
the tested system sizes, the square of the standard overlap
and the link overlap are totally equivalent as far as the
quenched equilibrium state is concerned. In view of our
result, the proposed pictures which assign different behav-
ior to the two overlap distributions, in particular, the TNT
[6,7] picture, should be rejected. It is interesting to point
out that, since the present analysis deals only with the
distribution of P(g? Q) and not with the higher order
ones such as, for instance, P(q7,, ¢33, Q12 023, our re-
sults are compatible with different factorization properties
of the two overlaps like those illustrated in [13].
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