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Reverse-Selective Diffusion in Nanocomposite Membranes
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The permeability of certain polymer membranes with impenetrable nanoinclusions increases with the
particle volume fraction [T. C. Merkel et al., Science 296, 519 (2002)]. The discovery contradicts
qualitative expectations based on Maxwell’s classical theory of conduction or diffusion in composites
with homogeneous phases. This Letter presents a theory based on an hypothesis that polymer chains are
repelled from the inclusions during membrane casting. The accompanying increase in free volume, and
hence solute diffusivity, yields bulk transport properties that are in good agreement with experiments.
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Polymeric membranes facilitate a variety of molecular
separations. Because their microstructure is of molecular
scale, the polymer architecture can be tailored to specific
penetrant mixtures. Merkel et al. [1,2] recently showed that
incorporating nanometer sized inorganic particulates into
certain amorphous polymer glasses increases the mem-
brane permeability and selectivity. Because of its signifi-
cant technological applications, this discovery has stimu-
lated further experimental investigations [3–6]. However,
a theory that quantifies how the inclusion size and concen-
tration affect the permeability and selectivity has yet to
emerge.

Merkel et al. highlighted that classical Maxwell-like
theories fail to describe the qualitative trends. More im-
portantly, they pointed out that the Cohen-Turnbull free-
volume theory [7] can be invoked to explain qualitative
aspects of the enhanced permeability and reverse selectiv-
ity. Their idea is significantly extended in this Letter to
achieve a quantitative interpretation of the experiments.
The theory is based on classical Fickian diffusion past an
impenetrable sphere (silica nanoinclusion) embedded in a
polymeric continuum. A classical methodology is used to
derive the effective diffusivity for a dilute random array of
such inclusions. However, a thin layer at the inclusion-
polymer interface is presumed to exist where the polymer
segment density is lower than in the bulk. It is hypothesized
that the accompanying increase in free volume reflects a
repulsive interaction between the polymer chains and in-
clusions during membrane casting. The accompanying in-
crease in the local diffusivity of a penetrant molecule is
demonstrated to yield a bulk (diffusive) permeability en-
hancement that is commensurate with the experiments of
Merkel et al..

The assumption that polymer is depleted in the interfa-
cial region is supported, in part, by experiments showing
that the average polymer density in dry composite mem-
branes decreases with increasing silica content [2]. Also,
transmission electron microscopy images of silica-based
nanocomposites [2] suggest particle aggregation. Note that
quiescent solutions of polymer, silica, and solvent often
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phase separate, and surface modifications have a signifi-
cant influence on dispersion stability and inclusion-
polymer adhesion [2,8]. Indeed, the fumed silica in the
experiments of Merkel et al. was chemically modified,
making it compatible with the organic solvent that also
hosts the polymer during membrane casting. In this work,
an attractive interparticle potential is attributed to polymer
depletion [9]. However, because of intense initial mixing,
and an increasing bulk viscosity during casting (slowing
microstructural dynamics), the final distribution is likely to
reflect a ‘‘snapshot’’ of the relaxation toward equilibrium.
Under these conditions, equilibrium is established on the
polymer-chain length scale, simplifying the problem to one
with polymer depletion at the surfaces of well dispersed
(noninteracting) inclusions.

During evaporation, the polymeric phase is transformed
from a dilute or semidilute solution, through a concentrated
solution and melt, to an amorphous glass. Diffusion coef-
ficients of high molecular weight polymers in semidilute
solutions are in the range D� 10�11–10�13 m2 s�1 [10].
Therefore, the characteristic time for a polymer to diffuse
(reptate) a distance comparable to its size, say, l� 10 nm,
will be at most �l2=D� 10�3 s. Cast membranes are
dried over a period of about 24 h [2], so, assuming the
average polymer concentration remains uniform, chains
have time to adopt equilibrium conformations. However,
in the last stage of drying, which may be assumed to occur
at constant polymer density (polymer volume fraction
�0:8), the characteristic time for a uniform solvent front
to traverse a polymer is �0:1 s. Therefore, because chain
mobility (and flexibility) decreases with increasing poly-
mer volume fraction, it is not unreasonable to expect
equilibrium conformations to be frozen into the (final)
glassy state (rigid chains).

For steady gas permeation across a membrane with
thickness L, the diffusive flux is

jhjij � �De�n=L; (1)

where De is the effective diffusivity, and �n is the differ-
ential concentration of the diffusing penetrant. In this
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work, the gas solubility is assumed to be independent of the
solids concentration, so the inclusions are assumed to
influence the permeability only through their role in modi-
fying the effective diffusivity De. This should be a reason-
able approximation for the polymer composites and pene-
trants to which the model is compared. Merkel et al.
showed that the solubilities of nitrogen and methane in
poly(4-methyl-2-pentyne) (PMP)/silica composites are in-
dependent of the silica loading [2]. Similar conclusions
were drawn for n-butane. For PMP/silica composites,
which form the basis of the theoretical interpretation of
experiments in this Letter, Merkel et al. conclude that
permeability and selectivity are enhanced principally by
changes in penetrant mobility. They also presented data
showing that the most significant influence on the penetrant
diffusivity comes from the silica loading, not the relatively
small changes due to penetrant concentration.

Note that the experiments of Merkel et al. exhibit re-
verse selectivity, meaning that the permeability of larger
molecules is enhanced more than smaller ones. They point
out that this necessitates molecular-scale perturbations to
the polymer microstructure, which precludes the notion
that the permeability is enhanced by shells of void space,
for example, between the (impenetrable) inclusions and
surrounding polymer. Such voids are understood to give
rise to Knudsen diffusion, which does not yield a reverse-
selective increase in permeability. Rather, in the context of
the model developed here, a continuous change in the
polymer density (free volume) is necessary.

The methodology adopted in this work is summarized
as follows. First, the radially varying polymer segment
density distribution surrounding a single inclusion in an
unbounded polymer matrix is approximated using
de Gennes’s self-consistent mean-field theory. Then the
varying segment density is linked to the penetrant diffu-
sivity, using the Cohen-Turnbull free-volume theory, as
proposed by Merkel et al. Finally, the penetrant concen-
tration disturbances prevailing in a dilute, random distri-
bution of inclusions are averaged to approximate the
effective penetrant diffusivity for the composite.

A tractable analytical expression for the radial polymer
segment density is obtained from a self-consistent mean-
field model, with the so-called ground-state approximation
and a flat interface [11]. With a repulsive interaction be-
tween the polymer segments and the solid, the segment
concentration is [11]

c�r� � c1tanh2��r� a�=�� 	O��=a�; (2)

where c1 is the bulk concentration, and � � l=
������������
3vc1
p

is
the polymer correlation length, with l the segment length
and v the excluded volume (per segment).

Note that the mean-field potential that underlies Eq. (2)
is proportional to the segment density, and in this sense, it
is appropriate for semidilute solutions. However, because
correlations are neglected, the theory predicts the incorrect
segment-concentration dependence of the correlation
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length [11]. For concentrated solutions and melts, screen-
ing of the excluded-volume interactions may be invoked to
neglect correlations. However, in this case, the mean-field
potential should have a much stronger (nonlinear) depen-
dence on the segment concentration. Based on these short-
comings, it must be emphasized that the primary role of
Eq. (2) here is to provide a simple (two-parameter) model
that exhibits a monotonic change in the segment density
over a characteristic length �.

References connecting � to v and c1 below serve to
establish that the parameters inferred from experiments
provide a qualitative interpretation of reality. Note that
the correlation length inferred by fitting the model to the
experiments of Merkel et al. with silica embedded in PMP
is � � 0:8 nm. This is of the expected order of magnitude,
and because it is small compared to the inclusion radius
(a� 6 nm), the neglect of surface curvature is reasonably
justified.

The Cohen-Turnbull statistical mechanical theory [7]
yields a penetrant diffusion coefficient

D � A exp���vm=vf�; (3)

where A and � are constants, vm is the minimum free
volume required for a penetrant molecule to escape its
cage of neighboring atoms, and hence undergo diffusive
migration, and vf is the available free volume per volume
occupying element. For simplicity, each atom is assumed
to occupy, on average, a volume v0, where v1=3

0 is of the
order of a covalent bond length (�1:5 �A). By considering
the total volume, which comprises the sum of free and
occupied volume, it follows that vf � v0�m1=�v0n1�� �
1�, where m1 is the mass of a monomer (repeat unit), n1 is
the number of atoms per monomer, and � is the polymer
(mass) density.

It is convenient to introduce a segment volume fraction
� � cl3, which, by conservation of chain contour length
and mass, can be written as � � ��=m1�l1l2, where l1 is
the length of a monomer. It follows that

D � D1 exp
�
�

v
m�

����1�

�1��
���1��
�1�

�
; (4)

where �
 � n1v0=�l1l
2� and v
m � �vm=v0 are dimen-

sionless parameters that reflect the prevailing atomic and
molecular geometry.

Setting the bulk polymer volume fraction �1 � c1l3 �
1 and v � l3, it follows that l2 � m1=�l1��, � � l=

���
3
p

, and
�
 � n1v0�=m1. Under these conditions, 1��
 is the
fractional free volume of the bulk polymer, and the (maxi-
mum) diffusivity at the inclusion-polymer interface be-
comes

D�r � a� � D1 exp�v
m�
=�1��
��: (5)

Clearly, the diffusivity at the interface can be much larger
than in the bulk when �
 < 1 and v
m < 10. Note that
reverse selectivity prevails because the diffusivity de-
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FIG. 1. The scaled effective diffusivity De=D1 versus the
scaled inclusion radius a=� with v
m � �vm=v0 � 0:1, 0.2,
0.4, and 1.0 (increasing upward), �
 � 0:8, and �p � 0:13:
O��p� (solid lines); O��2

p� (dashed lines). The circles are
experimental measurements of the permeability enhancement
from [1] (reported radii scaled with � � 0:8 nm).
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FIG. 2. The scaled effective diffusivity De=D1 versus the
inclusion volume fraction �p with v
m � �vm=v0 � 1:0, �
 �
0:8, and �=a � 0:8=6:5 � 0:123: exact O��p� theory (solid
line); approximate O��2

p� theory (dashed line). The circles are
experimental measurements of the permeability enhancement
from [1] (with a � 6:5 nm). The dash-dotted line is Maxwell’s
self-consistent theory for impenetrable inclusions and unper-
turbed (homogeneous) polymer.
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creases continuously with increasing radial distance from
the inclusion-polymer interface [12].

Consider, for example, PMP, for which n1 � 15, m1 �

81 g mol�1, l1 � 3 �A, and ��840 kgm�3 [2]. These give
l � 0:73 nm and � � 0:42 nm, so with 1��
 � 0:22 [3],
it follows that v1=3

0 � 2:0 �A and v1=3
f � 1:3 �A. The same

values of v0 and vf emerge for poly�p-trimethylsilyl sty-
rene, another highly permeable glass forming polymer.

With a statistically homogeneous microstructure, the
average diffusive flux can be expressed as a volume
average

hji � V�1
Z
V
jdV; (6)

where the integration is over the discrete (inclusion) and
continuous (polymer) phases of an elementary volume V.
The local diffusive flux is j � �Drn, where n is the
penetrant concentration. Under steady conditions, conser-
vation demands r � �Drn� � 0, with a no-flux boundary
condition at r � a, a vanishing disturbance as r! 1, and
D�r� from Eqs. (2) and (4). When the volume fraction
�p � np�4=3��a3 � 1, the average flux is [13]

hji � �D1hrni 	 3�p�B=a
3�D1hrni 	O��2

p�; (7)

where hrni is the average concentration gradient and B is
the dipole strength, i.e., n! hrni � r	 Bhrni � rr�3 as
r! 1.

The effective diffusivity

De � D1�1� 3�p�B=a3�� 	O��2
p� (8)

is presented below with �1 � 1 and �
 � 0:8. The two
other independent parameters are the scaled correlation
length �=a and the scaled penetrant size v
m � �vm=v0.
Here, the principal influence of v
m is to set the diffusion
coefficient at the interface: D�r � a� � D1 exp�4v
m�.

As expected, all values of v
m > 0 with sufficiently large
�=a increase the effective diffusivity. Also, because the
relative increase in diffusivity depends exponentially on
the penetrant size [Eq. (5)], situations with multiple pene-
trants exhibit reverse selectivity [1,12].

To compare the theory with experiments, Fig. 1 shows
the (scaled) effective diffusivity De=D1 (lines) and mea-
sured values of the (scaled) permeability (circles) for�p �

0:13. The O��p� theory (solid lines) neglects particle
interactions, so the values are as given by Eq. (7). The
dashed lines are an O��2

p� theory [12], which has elements
of a self-consistent mean-field approximation with an ex-
plicit correction for interactions between pairs of particles
in a statistically homogeneous dispersion [14]. Note that
the (single particle) dipole strength and particle concen-
tration both affect two-body interactions. Some of the
experimental scatter may be attributed to the variety of
filler particles (all embedded in PMP) and, possibly, differ-
ent penetrants and degrees of particle aggregation [1].
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Nevertheless, with the foregoing approximations, the cor-
relation length inferred by the fit is � � 0:8 nm (with
�
 � 0:8) and, hence, the segment length l �

���
3
p
� �

1:4 nm. The repeat unit of PMP comprises two bond
lengths, so there are about 4.5 monomer units per statisti-
cal segment (in the immobilized and compressed chains).
As expected, more flexible polymers in solution [e.g.,
poly(oxyethylene)] have much fewer (�2) monomer units
per statistical segment [15].

Figure 2 shows how the effective diffusivity (with a �
6:5 nm) increases with the inclusion volume fraction. The
theory is presented with a correlation length � � 0:8 nm,
which was obtained from the fit to data in Fig. 1, so �=a �
0:8=6:5 � 0:123. Despite the experiments extrapolating to
1-3
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a value of De <D1 as �p ! 0, the theoretical and experi-
mental trends are in good agreement. For reference, the
dash-dotted line is Maxwell’s self-consistent theory for
impenetrable inclusions in an unperturbed polymer matrix.
It is remarkable, perhaps, that a perturbation extending
only � � 0:8 nm from the inclusion surfaces can have
such a significant influence on the bulk permeability.

Note that positron annihilation lifetime spectroscopy
(PALS) studies [1,2,5] reveal that high-permeability poly-
mers have small and large free-volume elements whose
radii span the range 0.3–0.60 nm. Furthermore, pulse field
gradient (PFG) NMR diffusion studies [3,6] reveal hetero-
geneity on micron length scales, which, in turn, suggests
tortuous interconnected networks of free-volume elements.
When silica inclusions are incorporated, PALS indicates a
significant increase in the number of large free-volume
elements, with a relatively small increase in their size
(�10%), while PFG NMR points to increased connectivity
of regions with an increased density of free-volume
elements.

The conclusions drawn from PFG NMR and PALS are
consistent with the theory presented here if the free-
volume elements created by the addition of nanoparticles
reside at the particle-polymer interface. The interpretation
of experiments presented above reveals that the thickness
of the depleted layer (1:5� � 1:2 nm) is about twice the
radius of the large free-volume elements ascertained by
PALS. Therefore, the experimental and theoretical inter-
pretations are compatible if the depleted layer is viewed as
a monolayer of free-volume elements.

If the inclusions are well dispersed, then the character-
istic size of connected domains would be limited by the
inclusion diameter (�13 nm). While this is considerably
larger than the size of the free-volume elements, micron-
sized networks (as suggested by PFG NMR) would require
primary particles to aggregate. Because the present theory
does not account for particle contacts, this shortcoming is,
perhaps, one of the more important limitations. Never-
theless, the model accurately describes many of the quali-
tative and quantitative aspects of the experiments of
Merkel et al., so it may still prove to be valuable.

The simplifying approximations adopted in this work
are summarized as follows. First, the effective solute dif-
fusivity was compared with experimental measurements of
the permeability enhancement, so solubility was assumed
to be independent of the inclusion concentration. Next, a
mean-field description of the polymer segment density was
adopted, with a flat, repulsive interface where the segment-
concentration vanishes. Further, the diffusion coefficient
was assumed to follow the Cohen-Turnbull formula
[Eq. (3)], with the occupied volume proportional to the
atomic number density. Finally, the theory applies to a
statistically homogeneous dispersion, whereas inclusions
may aggregate according to the delicate balance of forces
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acting between the solvent, polymer, and inclusions during
membrane casting.

In conclusion, a (quantitative) theoretical model has
been proposed that captures the correct dependence of
the bulk (diffusive) permeability of polymeric nanocom-
posites on the inclusion size and volume fraction. The
influence of the nanoinclusions on diffusive selectivity,
which is reported elsewhere [12], is also consistent with
experiments. Note that the model does not attribute en-
hanced permeability and selectivity directly to the glassy
nature of the dry polymer. Rather, these characteristics
arise from a repulsive solvent-mediated interaction be-
tween polymer and nanoparticles during membrane cast-
ing. It follows that, with a judicious choice of solvent,
inclusion surface treatment, and mixing and drying rates,
similar effects might be achieved with rubbery polymeric
matrices.
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