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Correlation of Structural and Electronic Properties in a New Low-Dimensional Form
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Using high resolution electron microscopy and first principles quantum mechanical calculations we
have explored the fundamental physics and chemistry of the semiconductor, HgTe grown inside single
wall carbon nanotubes. This material forms a low-dimensional structure based on a repeating Hg2Te2

motif in which both atom species adopt new coordination geometries not seen in the bulk. Density-
functional theory calculations confirm the stability of this structure and demonstrate conclusively that it
arises solely as a consequence of constrained low dimensionality. This change is directly correlated with a
modified electronic structure in which the low-dimensional form of HgTe is transformed from a bulk
semimetal to a semiconductor.
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FIG. 1. (a), (b) Composite restorations of the phase of the exit
plane wave function of two separate SWCNTs with diameters of
1.36 and 1.49 nm, respectively, containing crystalline HgTe. The
boxes indicate individually restored subregions as described in
the text which were also used for establishing relative focus
levels along the SWCNT axis.
Filled single wall carbon nanotubes (SWCNTs) [1] are
ideal model systems for studying atomically regulated
crystal growth and for investigating the fundamental phys-
ics of low-dimensional materials [2–9] and their applica-
tion [10–12]. These tubes, with a typical diameter range of
1–2 nm, can be synthesized in gram scale quantities
[13,14] and are formed from rolled sheets of sp2 graphene
carbon.

SWCNTs have been filled with a variety of materials
including ionic halides, metals, and molecular species
[2,4–9] and for many of these, new encapsulated structures
that are different from those of the bulk, have been iden-
tified. Previous studies [4,6–9] have described only the
structural modifications arising from low-dimensional con-
finement and there are no reports describing the correlation
between these and the resultant physical or chemical
properties.

In this Letter we report, for the first time, the detailed
characterization of an encapsulated 1D semiconductor
crystal with a nominal stoichiometry, HgTe, that adopts a
new structure based on a local coordination not observed in
the bulk arising solely as a result of low-dimensional
confinement. We further report the results of density-
functional theory (DFT) calculations that demonstrate the
global stability of this structure and predict an electronic
structure substantially modified from that of the bulk
material.

Figures 1(a) and 1(b) show the phase of the exit plane
wave function [15,16] restored from a focal series of
images of two separate HgTe filled SWCNTs. Focus levels
measured from subregions I to IV indicate that the filled
SWCNT shown in Fig. 1(a) is oriented orthogonally with
respect to the electron beam incident direction. Similarly,
focus levels measured from subregions V to VIII indicate
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that the second SWCNT [Fig. 1(b)] is tilted by ca. 25�

relative to that in Fig. 1(a). Careful examination of the
restored phase of these two fragments reveals that they
have closely related structures derived from a common
motif. In Fig. 1(a) this motif is identified as a regular repeat
of two bright atom columns of equal intensity along the
SWCNT axis, separated by a layer that changes contrast
from an unresolved linear feature to three distinct atom
columns with differing intensities. These features are con-
sistent with two orthogonally stacked layers of Hg2Te2

dimers and this has been confirmed by comparison with
extensive image simulations.
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FIG. 2 (color online). (a) Generalized Hg4Te4 motif with both
Hg2Te2 dimers delineated. This motif is shown with a local
rotation angle ��� � 0, intralayer Hg-Te-Hg angle ��� � 70�,
and relative tilt angle ��� � 0. (b) Subsets of optimized simula-
tions of the phase of the specimen exit plane wave with ��� � 0
and 25�, respectively, for fixed ��� � 70� and for values of ���
as indicated. (c) Detail from Fig. 1(a). (d) Simulation matching
(c). (e) Structure model corresponding to the indicated region in
(d). (f) Detail from Fig. 1(b). (g) Simulation matching (f).
(h) Structure model corresponding to the indicated region in (f).
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Cross correlation of individual layers in the experimen-
tally restored phase along the SWCNT axis with a gener-
alized motif has been carried out for both nanotubes
[Fig. 2(a)] [21]. In these calculations the local rotation
angle of the motif with respect to the incident beam direc-
tion (�) and the internal Hg-Te-Hg angle (�) were varied
for the two tube inclinations (� � 0� and 25�) correspond-
ing to the experimentally determined values. This has
enabled the full three-dimensional structure of the nano-
crystal to be determined from the two experimental pro-
jections. An optimum fit (based on the maximum in the
correlation coefficient) was obtained for both crystal frag-
ments with a fixed value of � � 70�. Two subsets of
simulations for varying � which closely match the experi-
mental images in Figs. 1(a) and 1(b) are shown in Fig. 2(b).
These simulations confirm that the structure of both en-
capsulated crystals is identical (with � � 70� in both
cases) but that they are rotated with respect to each other
(by 32�) and are inclined at different angles (0� and 25�)
with respect to the incident beam direction [Figs. 2(a)–
2(h)]. Both fragments are also twisted by ca. 15� along the
tube axis. Optimized structural models are shown in
Figs. 2(e) and 2(h) corresponding to the indicated subre-
gions of the simulations shown in Figs. 2(d) and 2(g),
respectively, with values for �, �, and � indicated.

The measured interatomic spacing within the encapsu-
lated nanocrystal equals the 0:28� 0:01 nm Hg-Te bond
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distance (within experimental error) found in the bulk
sphalerite form of HgTe [23]. However, the bond angles
at both Hg and Te are altered significantly from the tetra-
hedral coordination of the bulk. The Hg atoms have three
coplanar bonds disposed at 120� and the Te atoms have
bonds disposed at 120�, 90�, and 90�. This clearly dem-
onstrates that the local coordination is substantially altered
in this low-dimensional state and that the bulk site sym-
metry equivalence of Hg and Te is broken. We also note
that the nanotube wall contrast does not alter along the tube
axis and that its diameter remains constant in contrast to
previously reported results for the ionic material CoI2 [9],
thus suggesting an absence of any strong interaction be-
tween the crystal and the tube wall.

It is possible to rationalize this modified Hg coordina-
tion geometry in terms of formal hybridization. In bulk
HgTe both atomic species are tetrahedrally coordinated
(corresponding to formal sp3 hybrids). The planar trigonal
configuration at Hg observed here in the low-dimensional
state is known for various discrete compounds of Hg and
Te including a series of 1D chain anions [24] and is
attributed in these structures to sp2 hybridization. The
conventional octahedral coordination in group VI species
(described using d2sp3 hybrids) is not a possible explana-
tion in this system since DFT calculations (see later)
agree with the observed structure without any explicit
representation of the Te d electrons. Therefore, we regard
the trigonal-planar Hg coordination as arising from
�HgTe3�

� units in which the 6 valence electrons are ac-
commodated in three sp2 hybrids with an unoccupied pz
orbital normal to these. To obtain the distribution of Hg-Te-
Hg angles observed, we further require that a Te lone pair
occupy one of the orbitals in the sp2 plane and the other
orbitals bond to Hg. This hybridization is also consistent
with the experimentally observed difference in site sym-
metry between Hg and Te.

We have also used first principles quantum mechanical
calculations [25] to further investigate the observed struc-
ture and to predict its properties. In a bulk covalent mate-
rial such as HgTe changes in the bonding arising directly
from low dimensionality are the dominant driving force
towards structural change, and interactions with the tube
wall (predominantly van der Waals) are of secondary im-
portance. Accordingly, we have used free quasi-1D crystals
as the basis for our calculations, with no explicit represen-
tation of the nanotube present and the validity of this
approach is apparent from the results obtained. Four start-
ing configurations for DFT calculations were used, three
generated from bulk sphalerite and wurtzite forms of HgTe
together with a fourth using the optimized geometry ob-
tained from the experimental data. After complete struc-
tural optimization, all starting structures yield 1D HgTe
polymorphs of comparable energy, but that derived from
the experimental data gave the lowest-energy structure (at
�679:15 eV=atom) [28]. A detail showing the optimized
1-2



FIG. 3 (color online). Optimized geometry of the low-
dimensional form of HgTe showing local bond lengths and
angles calculated from DFT. The equivalent experimentally
determined bond lengths and angles are given in the text.
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calculated geometry is shown in Fig. 3 demonstrating
excellent agreement in both bond distances and angles
(within experimental error) with the experimental data.

The minor relaxations observed verify that the experi-
mental structure is reliable and represents a thermody-
namic minimum at low dimensionality. However, we
note that within the error of the DFT calculation there
exists a competitive structure [28] but that this has never
been observed experimentally. These calculations also
clearly demonstrate that the tube-wall interaction is not a
significant influence other than to confine the material to
one dimension. We further note that the relaxed structures
obtained from the alternative starting configurations also
display a preference for threefold coordination of both
chemical species: trigonal planar for case of Hg and trigo-
nal bipyramidal for Te despite starting from structures with
exclusively tetrahedral bond angles. We have also calcu-
lated the electronic band structure of the low-dimensional
form which reveals that the structural change observed also
leads to a radical modification of the electronic properties,
in that all three materials become semiconducting, with a
band gap of at least 1.2 eV [29], in contrast to the bulk
material which is a semimetal. An interesting comparison
may be made with calculations on HgTe clusters [30],
where the same trigonal-planar structural motif appears
on the surfaces of those clusters that have semiconducting
character. Finally, our calculations reveal a charge transfer
of 0:28e from Hg to Te compared with bulk Mulliken
populations, consistent with our earlier interpretation of
the bonding and if the bonding in the bulk is considered to
be semi-ionic, then this transfer lessens that ionic
character.
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