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Twisted Vortex State
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We study a twisted vortex bundle where quantized vortices form helices circling around the axis of the
bundle in a ‘‘force-free’’ configuration. Such a state is created by injecting vortices into a rotating vortex-
free superfluid. Using continuum theory we determine the structure and the relaxation of the twisted state.
This is confirmed by numerical calculations. We also present experimental evidence of the twisted vortex
state in superfluid 3He-B.
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FIG. 1. The formation of twisted vortex state. The vortices
have their propagating ends bent to the sidewall of the rotating
cylinder. As they expand upwards into the vortex-free state, the
ends of the vortex lines rotate around the cylinder axis. The twist
is nonuniform because boundary conditions allow it to unwind at
the bottom solid wall. The figure gives a snapshot (at time t �
25 ��1) of a numerical simulation of 23 vortices initially
generated near the bottom end (t � 0). The parameters are
2��R2=� � 86, � � 0:18, and �0 � 0:16 [15], and R=a � 3�
105, which corresponds to T � 0:4Tc in 3He-B at 29 bar pres-
sure. For time evolution see Ref. [16].
The equilibrium state of a superfluid under rotation
consists of an array of quantized vortices, which are par-
allel to the rotation axis. Similarly, the equilibrium state of
a type II superconductor in a magnetic field consists of an
array of flux lines parallel to the field. Here we consider
twisted vortex states where the vortices have a helical
configuration circling a common axis. An example would
be a vortex bundle deformed under torsion. One type of
twisted vortex state appears in a superconducting current-
carrying wire in parallel external magnetic field [1–3]. The
current induces a circular magnetic field, which makes the
field lines helical, and in order to be force free, the flux
lines take the same conformation. Here we concentrate on
a new type of twisted state, which can occur even when the
driving field is a constant. Only this second type can appear
in charge-neutral superfluids, where the rotation is not
affected by currents.

In this Letter we demonstrate that the twisted vortex
state appears spontaneously when vortex lines expand into
vortex-free rotating superfluid. We present analytical re-
sults for the twisted state using the continuum theory of
vorticity. In particular, we state the equilibrium force-free
conditions for a uniformly twisted state, and find the
equations governing the relaxation of a nonuniform twist.
We present numerical simulations for both the generation
and the relaxation of the twist. We discuss the stability of
the twisted state, which is limited by the helical instability
[4,5]. The results are valid in superfluids and also in super-
conductors in the limit of large penetration depth and no
pinning. Finally, we present experiments that show evi-
dence of the twisted vortex state in superfluid 3He-B.

Generation.—We study superfluid in a long cylinder that
rotates around its axis. We assume that initially the system
is in metastable state, where no vortex lines are present.
Then a bunch of vortex loops is created at some location.
They start to expand along the cylinder. A snapshot from
our numerical simulation of such propagating vortices is
shown in Fig. 1. Two striking observations can be made.
First, the vortices form a front, where the ends of the lines
bend to the sidewall. Second, the growing vortex bundle
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behind the front is twisted, because the front rotates at a
different speed than vertical vortex sections. The existence
of the front is deduced from simulation and experiment.
Here we concentrate on the twisted state behind the front.

The equilibrium state of the superfluid consists of an
array of rectilinear vortex lines at areal density nv �
2�=�, where � is the angular velocity and � the circula-
tion quantum [6]. The superfluid velocity vs at the location
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of each vortex is precisely equal to the normal fluid veloc-
ity vn � �� r, so that the array rotates rigidly together
with the cylindrical container. In contrast, the superfluid
velocity vanishes in the vortex-free state, vs � 0. All
velocities are given in the laboratory frame.

Next we determine the rotation of the vortex ends on the
sidewall. For simplicity we consider zero temperature,
where the velocity of a vortex line vL is equal to the local
superfluid velocity. The average superfluid velocity in the
vortex front is the average of vs between the vortex state
and the vortex-free state. This gives that the average angu-
lar velocity of the front is half of the container velocity,
h _�i � �=2. Thus the vortex front lags behind the vortex
array which gives rise to the twisted vorticity.

It is interesting that the angular velocity of the front can
also be determined from alternative arguments. One is
based on the Hamiltonian equations _� � @H=@L and _L �
�@H=@�, where L is the component of angular momen-
tum along the cylinder axis z. Shifting the vortex front
vertically, the former equation gives _� � �E=�L, where
�E is the energy difference and �L the angular momen-
tum difference between the vortex and vortex-free states.
Evaluating these using the continuum model of vorticity
(vs � �� r in the vortex state) gives the same result as
above. This result is also easy to generalize to the case
where the vortex number N is smaller than in equilibrium,
and the result is

_� �
N�
2�

ln�R=Rv� � 1=4

R2 � R2
v=2

; (1)

where R2
v � N�=2��. A third argument relies on the

Josephson relation, where the rotating vortex ends cause
a phase slippage to compensate the chemical potential
difference between the two states [7]. The rotation of one
vortex in agreement with Eq. (1) has been observed ex-
perimentally by Zieve et al. in a cylinder with a wire on the
axis and zero applied flow [8].

Uniform twist.—We construct a description of the
twisted vortex state using the continuum model of vorticity
[6,9,10]. We start by considering a twisted state which has
translation and circular symmetry. This limits the super-
fluid velocity to the form

v s � v��r��̂� vz�r�ẑ; (2)

in cylindrical coordinates �r;�; z�. It is straightforward to
calculate the vorticity! � r� vs. The motion of a vortex
(velocity vL) is determined by the general equation

v L� ~vs��ŝ��vn� ~vs���
0ŝ�	ŝ��vn� ~vs�
: (3)

This includes the mutual friction between the vortex lines
and the normal fluid with coefficients � and �0. Here ŝ is a
unit vector along a vortex line and ~vs is the superfluid
velocity at the vortex core. In continuum theory ŝ � !̂ (the
unit vector along !), and ~vs � vs � �r� !̂ differs from
the average velocity vs by a term caused by the vortex
curvature [6]. In our case it is a small correction but is
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included for completeness. Here � � ��=4�� ln�b=a�, b is
the vortex spacing, a the core radius. Note that only the
component perpendicular to ŝ of Eq. (3) is relevant since
vL parallel to ŝ is of no consequence.

We require that vortices do not move radially in the
twisted state (2). This gives the condition

��r�v��
�v�
r
�
dv�
dr

�
�vz

dvz
dr
�

�
j!jr

�
dvz
dr

�
2
�0: (4)

Moreover, this condition implies that all frictional forces
vanish since the twisted vortices rotate uniformly with the
cylinder, vL � �� r. The only deviation from solid body
rotation on the average is swirling vs that everywhere is
parallel to the twisted vortices. We conclude that Eqs. (2)
and (4) represent a family of stable uniformly twisted
states. The wave vector Q � !�=!zr of the twist is an
arbitrary function of the radial coordinate, Q�r�. An ex-
plicitly solvable case is obtained by choosing a constant Q
and neglecting �:

v��r� �
���Qv0�r

1�Q2r2 ; vz�r� �
v0 �Q�r2

1�Q2r2 : (5)

An important property of the twisted states is the flow
parallel to the axis, vz�r�. Assuming that there is no net
flow gives an integral condition for vz�r�. In the case of
Eq. (5) this implies v0 � ��=Q�	Q

2R2= ln�1�Q2R2� �
1
. The deviation of v� from �r implies that vortices are
more compressed in the center and diluted at larger r
compared to equilibrium rectilinear vortices.

We note that also the Navier-Stokes equations have a
stationary solution for uniform swirling flow, but only
under a pressure gradient along z. The twisted state is
closely related to the inertia wave in rotating classical
fluids. Various forms of twisted vorticity as solutions of
the Euler equation have been studied in the literature [11].

Nonuniform twist.—Next we construct equations gov-
erning the relaxation of twisted vortices. Now all compo-
nents �vr; v�; vz� of vs are nonzero and functions of r, z,
and time t. Here we take into account only first order
deviations from the rotating equilibrium state. The dy-
namical equations can be formed using again Eq. (3) for
vL, to obtain equations for the radial and azimuthal coor-
dinates of vortices. These together with the continuity
equation and ! � r� vs form a closed set of equations.
The same set of equations has been derived previously
starting from the dynamical equation for vs [4,12]. The
essential result is the dispersion relation [4,12]

��2 � k2��
�

� �i���2 � 2k2�2�

� i
���������������������������������������������������������������������������
�2�4 � 4�1� �0�2k2��2 � k2��1�2

q
:

(6)

The waves giving rise to this dispersion are of the form
vr � ckJ1��r� exp�ikz� i�t� and vz � ic�J0��r��
exp�ikz� i�t�. J0 and J1 are Bessel functions, while
2-2
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FIG. 2. A snapshot of the numerically calculated vortex state
expanding along z: (a) vortex configuration, (b) axial vz, and
(c) azimuthal v� components of the superflow velocity. The
velocities, plotted as functions of z, are averaged over the
azimuthal angle and are shown at radii r � nR=6 with integer
n. Note that v� ��r changes sign in (c) close to the center of
the bundle, as predicted by Eq. (5). The simulation was started
with 203 vortices and the picture was taken after a time interval
of 60 ��1. The parameters are the same as in Fig. 1 except
2��R2=� � 214, R=a � 1:5� 105. For clarity, r and z coor-
dinates have different scales in (a).
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�1 � 1� �k2=2� and �2 � 1� ���2 � k2�=2�. The
boundary condition vr�R� � 0 leads to � � 3:83=R;
7:01=R; . . . . We study the case that the square root in
Eq. (6) is real. Then the negative sign corresponds to radial
motion of vortices (which induces also azimuthal motion).
Here we are interested in the positive sign, which corre-
sponds to twisting the vortex state. In this case the fre-
quency � vanishes for vanishing wave vector k. This is in
agreement with our preceding analysis that there is no
relaxation of the uniformly twisted state. For a nonuniform
twist we have to consider a finite k, but still assume k�
R�1. The dispersion relation (6) then simplifies to � �
�ik2�2�=�2 � ��=d, where d is another mutual friction
coefficient d � �=	�1� �0�2 � �2
. This limit corre-
sponds to the diffusion equation

@f
@t
� D

@2f

@z2 ; D �
1

d

�
2�

�2 � �
�
; (7)

with effective diffusion constant D. Here f�z; t� can be
either vr or vz. We see that the diffusion gets faster towards
lower temperatures, where the friction coefficients ap-
proach zero.

Simulation.—We have tested the previous theory with
numerical calculations. In the initial state we have placed a
number of vortices at one end of a rotating cylinder so that
they bend from the bottom to the sidewall. The dynamics is
determined by calculating ~vs in Eq. (3) from the Biot-
Savart integral [13]. We assume vn � �� r. An illustra-
tive case with a small number of vortices is shown in Fig. 1.
Another case with more vortices is examined in Fig. 2
together with the averaged axial and azimuthal velocity
profiles.

The essential features in Fig. 2 are the vortex-free state
in the upper part of the cylinder, the propagating vortex
front, and the twisted vortex state that is left behind. In the
front v� increases rapidly so that the azimuthal counter-
flow v� ��r is strongly reduced in absolute value. While
the vortex front progresses, the vortex ends rotate at a lower
speed than the cylinder. This generates the twisted vortex
state. A clear signature of the twist is the axial velocity vz.
It is downwards in the center and upwards in the periphery
(corresponding to a left-handed twist, Q< 0). At the bot-
tom wall the boundary condition prohibits any axial flow.
This implies that the twist vanishes there. We assume that
the vortex ends can slide with respect to the bottom wall.
Thus the winding generated by the front is unwound at the
bottom.

The calculations indicate that the vortex front deviates
from any equilibrium configuration and probably cannot be
described by simple analytic theory. On the other hand, the
relaxing twist seems to obey the diffusion equation (7). The
profile of vz in Fig. 2 can be understood as relaxation
towards a steady state where vz is linear in z.

The twist implies superflow parallel to the vortex lines.
In such a case it is expected that individual vortices can
become unstable against helical distortion. A calculation in
21530
Ref. [4] predicts this helical instability to take place for
rectilinear vortices when the velocity of the parallel flow
reaches vz � 2

����������
2��
p

. The simulations indicate that the
maximum axial velocity vz (see Fig. 2) remains smaller
than this limit. It appears that if any tighter twist is created
in the front, it is immediately relaxed by instabilities and
subsequent vortex reconnections. Note that the same hel-
ical instability is responsible for flux flow in the force-free
configurations in superconductors [2,5].

Experiment.—We now turn to the evidence for the
twisted vortex state from NMR measurements on a rotating
sample of 3He-B. The experimental details have been
described in Ref. [14]. What is essential is that the NMR
absorption is measured at two symmetric locations near the
ends of the long sample cylinder. A measuring run is shown
in Fig. 3. The vortices are injected in the middle of the
cylinder at time t � 0. Then the NMR line shapes change
in both locations simultaneously from the initial vortex-
free form (N � 0 spectrum in the inset of Fig. 3) to that of
the final equilibrium vortex state (N � Neq spectrum).
During the transition the absorption is first shifted from a
‘‘counterflow’’ peak to an overshoot in the ‘‘Larmor re-
gion’’ and later redistributed more evenly over the entire
spectrum. By tuning one spectrometer on the counterflow
peak and the other on the peak in the Larmor region, the
timing of the two peaks is resolved in the main panel. We
see that after a flight time of 22 s, the vortex fronts reach
the spectrometers. The spectrometer tuned to the counter-
flow peak sees a rapid drop in absorption. The other
spectrometer tuned to the Larmor peak records first a rapid
2-3
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FIG. 4. The time constant for the decay of the Larmor absorp-
tion (data points) compared to the decay of the twisted state
according to the slowest mode of Eqs. (6) and (7) (line). The line
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[14].
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FIG. 3. NMR absorption signals as a function of time after
injection of vortices at t � 0. The two NMR absorption records
in the main panel show the reduction in the counterflow peak and
the overshoot in the Larmor region. The former is interpreted as
the arrival of the vortex front and the rapid increase in v�. The
latter arises from the axial flow velocity vz, caused by twisted
vortices, and the subsequent slow relaxation towards the equi-
librium state. The inset shows the NMR line shapes in the initial
vortex-free state N � 0 and the final equilibrium vortex state
N � Neq. The spectra are measured at constant temperature and
have the same integrated absorption.
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increase, followed by a slow exponential relaxation with a
time constant of 14 s towards the final level of the equilib-
rium vortex state.

The quantitative interpretation of the two signals re-
quires detailed analysis of order parameter textures in
3He-B with curved vortices and will be presented else-
where. Very simply, though, a large counterflow peak
comes from counterflow vn � vs that is perpendicular to
the rotation axis z (when the static magnetic field is along
z). Conversely, large absorption near the Larmor frequency
comes from counterflow parallel to z. Because z is a
symmetry direction, there is always some absorption near
the Larmor frequency, but it is modest under normal cir-
cumstances, where no axial flow is present (N � Neq spec-
trum in Fig. 3).

The transient absorption traces in Fig. 3 can now be
understood as a measurement of the vortex state in Fig. 2 at
a fixed detector location zdet. The arrival of the vortex front
at zdet causes an abrupt reduction in the counterflow peak as
jv� ��rj is reduced. Simultaneously vz is increasing
which is seen as a rise in the Larmor absorption. The
subsequent decrease of vz after the passage of the front
is seen as relaxation of the Larmor absorption towards the
equilibrium vortex state.

The time constant for the decay of the Larmor absorp-
tion is plotted in Fig. 4 as a function of temperature
together with the slowest mode from the diffusion
Eq. (7). We note that the theoretical eigenvalue is in order
of magnitude agreement with the measurements. It is
especially noteworthy that relaxation gets faster with de-
21530
creasing temperature. This may at first seem surprising
since the relaxation is usually associated with friction,
which decreases with decreasing temperature. Our simula-
tions, which are time consuming at the experimental pa-
rameter values, yield a time constant which is larger but
within a factor of 3 from the experimental value.

In conclusion, in a rotating superfluid a front followed
by a twisted vortex bundle is the preferred configuration of
vortex expansion, rather than a turbulent tangle, when the
induced supercurrents remain below the helical instability
limit. It appears feasible that a similar state can be gen-
erated in a superconductor in the superclean limit.

We thank N. Kopnin, E. Sonin, and G. Volovik for useful
comments.
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