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Resonance Method of Electric-Dipole-Moment Measurements in Storage Rings
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A ‘‘resonance method’’ of measuring the electric dipole moment (EDM) of nuclei in storage rings is
described, based on two new ideas: (1) Oscillating particles’ velocities in resonance with spin precession,
and (2) alternately producing two sub-beams with different betatron tunes—one sub-beam to amplify and
thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the
other to make the EDM measurement.

DOI: 10.1103/PhysRevLett.96.214802 PACS numbers: 29.20.Dh, 13.40.Em
FIG. 1 (color online). An EDM ring.
Introduction.—Discovery of the intrinsic electric dipole
moment (EDM) would indicate direct violation of T (and
P) symmetry. This Letter proposes to measure nuclei
EDM’s in storage rings with an accuracy such that the
observed EDM values will be bigger than standard model
(SM) predictions but well in the frame of non-SM theories,
supersymmetry (SUSY) the leading candidate among
them. The experiment will therefore, in effect, be a test
of the SM. The new method proposed in this Letter belongs
to the developing area of using storage rings especially
designed to measure EDM’s [1–3]. For lack of space we
cannot review the publications on non-storage-ring EDM
measurements, for example [4–6]. We only note that our
new method differs in almost all respects from that de-
scribed in [1]. Its advantages include a much smaller ring
(because we can use much bigger magnetic fields) and
greater ease of canceling false signals imitating EDM
(because it is easier to observe oscillating perturbations
than those constant in time).

The method is based on: (1) using forced oscillations of
particles’ velocities in resonance with the spin precession
in order to expose EDM (hence the name ‘‘resonance
method’’), and (2) alternately producing two sub-beams
with different betatron tunes (by alternating a lens gra-
dient) such that false EDM signals resulting from the ring
imperfections are amplified in one of the sub-beams by a
factor K� 1, permitting the imperfections to be corrected
without affecting the EDM in the other sub-beam (which is
used for the EDM measurement). After the imperfections
are corrected, the false signals carried by the sub-beam to
be used for the EDM measurement fall below the designed
statistical error for EDM.

Our simulations show that a slightly modified resonance
method can be used for EDM measurement of nuclei
having jaj * 1, a � �g� 2�=2, like the proton or
helium-3. For reasons of space we consider here only the
deuteron EDM measurement (a � �0:142 988) typical for
nuclei with a small anomalous gyromagnetic ratio.

Using resonance between velocity and anomalous mag-
netic moment.—Let a charged polarized particle rotate in a
06=96(21)=214802(4) 21480
storage ring (Fig. 1) with revolution frequency !c �
2�v=L, where v is velocity, and L is orbit length. The
frequency of the spin planar precession around this orbit is
!a � �e=mc�aB � a�!c, � � "=mc2. In its rest frame,
the particle interacts with vertical magnetic field ~B0 � � ~B
and radial electric field ~E0 � �� ~v� ~B�; the interaction
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Hamiltonian H � �� ~� 	 ~B0 
 ~d 	 ~E0�, where ~d �
�e@=2mc��~s is the particle electric dipole moment. If we
now oscillate electric field ~E0 in resonance with the spin
planar precession, we will observe a slow buildup of the
vertical polarization, Py � hsyi, proportional to d. (We use
x for radial, y for vertical, and z for longitudinal coordi-
nates.) As shown below, the only way to produce a spin-
resonance torque proportional to dwith the help of such an
electric field is to oscillate the particle lab frame velocity ~v,
and not the magnetic field ~B.

Consider the ring without perturbations (Fig. 1). As
defined in [7], the equation for the polarization vector ~P
(or spin operator ~s) in the presence of the EDM (marked by
subscript e), and valid for every spin, can be written as

d~s=dt � � ~s� � ~!a 
 ~!e�� ; ~!a � �e=mc�a ~B;

~!e � �e=2mc��� ~E� ~�� ~� 	 ~E��=��
 1� 
 � ~�� ~B�� ;

(1)

� � v=c. [For the spin-1=2 case, the term � ~�� ~� 	 ~E��=
��
 1� in ~!e was recently derived from extended Dirac
equations [8].] Ideally, we have no lab frame radial electric
field. We have a longitudinal electric field, since we use
synchrotron stability. But this field is small compared with
� ~v� ~B�, so we can neglect it in the!e. We can also neglect
the EDM term in the equations for sx and sz. Now, our ~v
(and possibly ~B) depends on time. By design, if the longi-
tudinal spin component oscillates as sz � sz0 cos�!at

’a�, then every particle velocity in our ring will contain
three (instead of the usual two) terms:

v�v0
��v�sy cos�!syt
�sy�
��v�mcos�!mt
’m� ;

!m�!a ; ’m�’a ; (2)

where subscript sy refers to the free synchrotron oscilla-
tions and m (‘‘modulated’’) refers to the forced (therefore,
coherent) synchrotron oscillations designed especially for
the EDM resonance. From (1),

dsy=dt � �e=2mc��� ~s� � ~v=c� ~B��y

� ��e=2mc2��vz�t�By�z�t�; t�sz�t�: (3)

We can neglect the �2 terms in (3). Then, introducing the
planar spin phase � � ��ae=mc�

R
t
0 By�z�t�; t�dt
 ’a�,

we get

�sy�t� �
Z t

0
dt�dsy=dt�

� �
sz�0�
2a

Z t

0
sin�

dv
dt
d�
 oscillating terms:

(4)

We see that magnetic field oscillations cannot affect the
buildup of sy if dv=dt does not oscillate in resonance
with sin�. In the case of precise resonance !m � !a,
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’m � ’a,

�sy�t� � �
sz0
4a
��vm=c�!at � �sz0���vm=c�!ct=4:

(5)

The bigger ��v�m, the smaller statistical error �d ����������������
h��d�2i

p
,

�d�e cm=yr� � 1:6� 103
@�eV s�=PA�vm �m=s�hB�T�i

�
����������������������������������������
fNfillTexpt�s�	coh�s�

q
: (6)

The following parameters seem to be achievable:
Acceptance of Nfill � 2� 1011 deuteron/fill having mo-
mentum p0 � 1:5 GeV=c, as our preliminary analysis of
the collective beam effects shows; initial horizontal polar-
ization P � 0:95; superconducting B0 � 3 T, hBi �
1:8 T, R0 � 1:7 m; the slow extraction of deuterons onto
an external polarimeter with fA2 � 0:01, where f is the
polarimeter efficiency and A the left-right scattering asym-
metry caused by the nonzero sy; spin coherence time
	coh � 1000 s (the prolongation of which is based mostly
on using multipole lenses [9], which are not shown in
Fig. 1); and the amplitude of the forced velocity modula-
tion ��v�m � 3:5� 106 m=s. With these parameters we
get �d � 2:5� 10�29e cm=yr (that is, after Texpt � 1:8�
107 s of the EDM measurement).

To achieve as big a ��v�m as possible we need super-
conducting rf cavities, see Fig. 1, with total voltage V0 �
10–20 MV=turn. Let this voltage oscillate as sin!rft, with
!rf � h!c, where h 20–40. The eigenfrequency !sy of
the free synchrotron oscillations must be chosen close to
the g� 2 frequency, !a. For modulations of the forced
oscillations ��v�m cos�!at
 ’a�, we can add one more rf
cavity oscillating as V1 sin�!1t
 ’a�, with V1 � V0, and
�!1 �!rf� � !a � !sy. Then the beatings between !1

and !rf , supported by voltage V1, will create the needed
coherent part of the synchrotron oscillations. Simulations
(and theoretical analyses) show that there exist two pos-
sible regimes with big coherent oscillations: a strongly
linear regime (using, for example, a specially designed rf
cavity [10] for the linearization of oscillations), or a
strongly nonlinear regime with well-stabilized coherent
oscillations [11].

The ring and its operations.—We have considered sev-
eral versions of resonance EDM rings and different optics.
Figure 1 represents the simplest version, in which we have
only two semicircular magnets, with an optional field
gradient @B=@R � 0 and two straight sections, the left
(LSS) and the right (RSS) sides in Fig. 1. At the LSS
side, the dispersion of the closed orbits corresponding to
different particle momenta, �x � D�p=p, is not zero, and
there are only two lenses, F. At the RSS side, where most
quadrupole lenses and all rf cavities are placed, D � 0.
The ring is not symmetric: lenses denoted by F, F1,Q, and
�F2 (a defocusing lens) are not equal to one another. Q, a
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special quadrupole at the RSS side whose gradient alter-
nates in time, will be discussed later. Figure 1 shows two
different asymmetric closed orbits corresponding to two
different particle momenta. Particles’ betatron oscillations
are performed around such closed orbits. The closed orbit
in the RSS is the same for all momenta. This property
cancels most of the undesirable spin-resonance effects
caused by imperfections of the lattice elements placed
along the RSS. The reason is that, in our method, only
field perturbations oscillating with the (g� 2) frequency
!a can imitate the EDM. Therefore, if the closed orbit does
not oscillate together with the forced velocity oscillations
(whose frequency is !a), then the undesirable rotations of
lenses do not produce such perturbations. Their vertical
shifts still do, but only if the lenses’ chromaticity is not
compensated. As for the rf’s, analysis and simulations
show that only inclinations of cavities in the vertical plane
can produce a false EDM signal—which will be canceled,
together with other effects, by the procedures described in
the next section.

The asymmetry of the closed orbits has been confirmed
by various beam-tracking simulations. If particles with
different momenta initially move along the center line of
the RSS, they have different radial coordinates and differ-
ent angles after passing one of the semicircular magnets.
The angles are corrected by lenses F, after which the
closed orbits corresponding to the different momenta be-
come parallel to one another and to the orbit at the RSS.
Obviously, the orbits converge at the RSS after finishing
the turn. But if a particle having p � p0 at the LSS initially
moves along any line that does not correspond to this
momentum, then its trajectory will not be closed after
one turn since the lens setup is not symmetric.

With the given F and @B=@R of the magnets, the length
of the straight sections is chosen such that momentum
compaction factor �p � ��L=L�=��p=p� � 1. Here
�L � L�p� � L�p0�, L�p� is the length of the closed orbit
for momentum p. If n � �R�@B=@R�=B � 1 (our choice
for the magnets), then the length of a straight section is
2R. (It must be zero if n � 0.) If �p � 1, then p=L �
p0=L0. Therefore, a��p�!c�p� � a��p0�!c�p0�, that is,
!a�p� � !a�p0�. This means that the g� 2 frequency
does not oscillate together with velocity oscillations, which
eliminates the possibility of false resonances imitating the
EDM at beam frequencies close to k!a, k > l. (See [12] for
another application of �p � 1.)

Gradient @B=@x of lens Q oscillates, h@B=@xi �
g cosN!ct, where g is the gradient averaged over a parti-
cle’s longitudinal and betatron oscillations and along lens
Q. In the case of N � h=2 (where h � !rf=!c �
the number of bunches rotating in the ring), every two
sequential bunches passing Q get on the average exactly
opposite gradient kicks. As a result, we have two sub-
beams with different betatron frequencies: the usual one
corresponding to the best beam stability (the ‘‘normal’’
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sub-beam) and one very close to spin resonance �!y�res �

k!c �!a (the ‘‘sensitive’’ sub-beam). Here !y is the
frequency of the vertical betatron oscillations. The lattice
imperfections met by the particles during their rotations in
the ring are practically the same for both sub-beams. At the
same time, the orbit perturbation and a false EDM signal
caused by these imperfections are greatly amplified in the
sensitive sub-beam. This amplification will permit us to see
and cancel these perturbations. The external polarimeter
precisely identifies individual bunches; then the bunches of
normal sub-beams are used to measure the EDM, and the
bunches of sensitive sub-beams are used to correct imper-
fections, as explained in the next sections. The needed g
value is around 20 G=cm if the length of the Q 0:5 m.
These parameters can be rather easily achieved by using a
specially designed superconducting rf cavity [10].

The assumed equality of lattice imperfections for both
sub-beams is correct because, at the level of the accuracy
of our corrections (see the next section), the orbits’ pertur-
bations responsible for the false spin resonance, though
very different for different sub-beams, are too small to
change the lattice imperfections for any sub-beam.

Amplification and correction of systematic errors (the
‘‘two sub-beams’’ procedure).—We propose to correct
systematic errors in three stages: (a) The usual accelerator
physics methods of spin perturbation corrections. (b) Cor-
rections using observations of obviously non-EDM sy
buildups. Note, for example, that the (dsy=dt) correspond-
ing to d� 10�26e cm in the deuteron case can be ob-
served even during a single fill time of 1000 s. So if we
already know that d < 10�26e cm and nevertheless see a
(dsy=dt) corresponding to d� 10�26, we can introduce
some counterperturbations to halt this obviously non-EDM
growth. All perturbations, including our counter-
perturbations, are then corrected at the next, final stage
of accuracy. (c) The two sub-beams procedure, probably to
be combined with the clockwise$ counterclockwise tech-
nique imitating the t$ �t transformation explained in [1].
As already noted, the main systematic errors come from
perturbative fields Bx, Bz, and Ey only if such perturbations
are coupled with the �v=v oscillations designed for the
EDM spin resonance. Because the ring is not homogeneous
along the azimuth, the spin-resonance frequencies are
!a 
 k!c, with integer k. Most such perturbations can
be expressed in terms of particle deviations y � y�t� oscil-
lating with these frequencies [13]. The magnitude of a false
EDM signal is proportional to the amplitude of these y
oscillations, whose sensitivity to the imperfections de-
pends on the closeness of their frequency, !y to �!y�res,
yres / 1=�!2

y � �!a 
 k!c�
2�. Because of its closeness to

resonance, a sensitive sub-beam will carry a false EDM
signal K-times larger than that carried by a normal sub-
beam, K� 1 being the ratio of the amplitudes of the sub-
beams’ vertical betatron oscillations. These amplitudes are
proportional to spin-resonance perturbations.
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Let us assume that all imperfections are amplified more
or less equally, which occurs when the vertical betatron
oscillations are sufficiently smooth. The correction proce-
dure in such a case is very simple. When we observe an
amplified false EDM signal from the sensitive sub-beam,
we must correct the (invisible but obviously existing)
imperfections by using some counterimperfections in
such a way that, at some time t, the integral buildup of
the spin signal carried by the sensitive sub-beam equals
zero:
Z t

0

�dsy
dt

�
edm
dt
 K

Z t

0

��dsy
dt

�
imp
�

�dsy
dt

�
cor

�
dt � 0 ;

(7)

where imp is ‘‘imperfection’’ , cor is ‘‘correction’’. In fact,
condition (7) defines time t. The spin signal carried by the
normal sub-beam at this time is
Z t

0

�dsy
dt

�
edm
dt


Z t

0

��dsy
dt

�
imp
�

�dsy
dt

�
cor

�
dt � �sy�t�:

(8)

From (7) and (8),

��sy�edm �
Z t

0

�dsy
dt

�
edm
dt

�
K

K � 1
�sy�t� � �sy�t�; K� 1: (9)

Note that this rather miraculous result, ��sy�edm � �sy,
does not depend on K’s actual value or sign. Moreover, (9)
is valid for both a single time interval with property (7) and
any sum of such intervals.

When the vertical betatron oscillations are not smooth,
then different imperfections can have different K’s known
a priori; we omit here analysis of such cases.

Tensor interactions.—Since the deuteron has spin one,
its Hamiltonian possesses quadrupole interactions and
magnetic and electric tensor polarizabilities that are qua-
dratic in spin. Correspondingly, Eq. (3) also acquires qua-
dratic terms. However, it can be shown that after these
terms are averaged over an arbitrary quantum state, they
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oscillate with frequencies n!a, n � 1; 2; 3; 4, and therefore
are averaged in time. The terms not averaged over time and
over beam parameter distributions fall below the accuracy
10�30e cm.

Conclusion.—By using the resonance method of EDM
measurement we can move far beyond the current experi-
mental limits on the EDM’s of nuclei (<3� 10�26e cm for
neutrons [6]) and enter the area of non-standard-model
predictions.
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