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New Formulation of the Equation for Synchrotron Oscillations
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We develop an orbit theory for synchrotron oscillations using the orbit length, s, as an independent
variable. This is commonplace for static magnetic fields (storage rings). We extend this to the case of
adiabatically varying magnetic fields (synchrotrons). Contrary to conventional treatments, betatron
acceleration terms appear in both the energy and phase equations. We derive one-turn difference equations
in the linear and adiabatic approximations. By a smooth approximation instead of the traveling-wave
approximation, and by combining the two equations, we obtain a differential equation where the betatron
acceleration terms are canceled. This equation is an extension of McMillan’s equation to the case of
strong-focusing synchrotrons.
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All of the devices in circular accelerators are placed at
fixed positions along the circumference of the machine.
Observations are also made at fixed positions. Thus, the
orbit length, s, is a natural independent variable, and the
(arrival) time and the energy are dependent (canonical)
variables. This description (s description) is commonplace
for synchrotron oscillations in the static case (constant
magnetic fields). However, the time, t, is usually used for
synchrotron oscillations in changing magnetic fields. In
this description (t description), it is difficult to study the
localized nature of rf cavities and impedance sources. We
are forced to use a traveling-wave approximation. On the
other hand, in the standing-wave picture (s description),
which is more physical, the localized objects are expressed
simply by periodic delta functions.

Another confusion in the existing literature is betatron
acceleration. This term (the _B term) is sometimes ne-
glected, where _B means the partial derivative with respect
to the time of the vertical magnetic induction, B, but this
must be included. This problem has been studied by vari-
ous authors. Among them, Kolomensky and Lebedev [1]
started from the s description for the energy equation with
the betatron acceleration term. By using the traveling-wave
approximation and changing the independent variable
from s to t, they showed that the _B term disappears in
the energy equation.

In the present theory, we start from the s description for
both the energy and the phase equations. Here, we ignore
the nonlinear terms such as _B2, etc. (adiabatic approxima-
tion). We further make linear approximations for longitu-
dinal and transverse coordinate variables except in the rf-
acceleration term. Then, we find that the _B terms appear in
the phase and energy equations. We can transform these
differential equations to difference (one-turn mapping)
equations in the adiabatic approximation. We then approxi-
mate the difference equations by differential equations
using a smooth approximation instead of the traveling-
wave approximation. When we combine these equations,
we find that the _B terms cancel each other under adiabatic
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conditions. This combined equation is an extension of the
one given by McMillan [2] to strong-focusing synchrotrons
using the s description. The present Letter is based on a
paper [3] by the present author. Here, we clarify some
missing points in Ref. [3]. The main additions are the
difference (mapping) equations, the smooth approximation
instead of the traveling-wave approximation, and the clari-
fication of the replacement of D�s�=��s� by �, where D�s�
is the dispersion function, ��s� is the radius of curvature of
the design orbit, and � is the momentum compaction
factor. These additions will make the theory applicable to
strong-focusing synchrotrons.

In the s description, the (arrival) time, t, and minus the
energy, �E, are canonical variables. We first make a
canonical transformation from t to � by the relation t �
t0 � �, where t0 is the arrival time of a synchronous
particle, t0�s� �

R
s ds=v0, v0 is the velocity of the syn-

chronous particle, and ��s� is the time delay of an arbitrary
particle. We put subscript 0 to variables of the synchronous
particle in this Letter. We then make the second canonical
transformation from (�;�E) to (�;��E) by the relation
E � E0 � �E, where E0 is the energy of the synchronous
particle and �E is the energy error. Although the equations
of motion can be derived from a Hamiltonian, we can
obtain them from physical considerations if we pay due
attention to the canonical natures of the variables. We
describe this simplified approach though the equations
are checked by a Hamiltonian formalism.

The energy equation is

d�E
ds

� eV�p�s� sc�fsin�� sin�0g � e _Bx; (1)

where eV is the peak energy gain by rf cavities, � is the rf
phase, sc is the position of the rf cavity, �P is the periodic �
function, and x is the horizontal displacement. In this
Letter, the dot means a partial derivative with respect to
time. The betatron acceleration term is derived locally
from the vector potential ~A by the relation ~E � �@ ~A=@t,
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where ~E is the electric field strength. The scalar potential
can be put to be zero in a charge-free region in vacuum. We
ignore nonlinear terms such as edge effects and assume a
two-dimensional field, where ~A is independent of s. Then,
the vector potential is easily obtained. This gives the
betatron acceleration term in Eq. (1) in the linear approxi-
mation, where _B is independent of s inside each magnet.
Now, since only the combination _B=B appears in later
developments, the value of _B can vary from magnet to
magnet in proportion to the value of B.

The time equation is derived by simple geometrical
considerations. Keeping only linear terms, we obtain after
several steps

d�
ds
�

1

v0

�
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�
�

1

�2
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0

�E
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�
; (2)

where�0 and �0 are the Lorentz factors of the synchronous
particle.

Now, x is decomposed as

x � x� �D
�

�E

�2
0E0

�
�B
B0

�
� xco; (3)

where x� is the coordinate of betatron oscillations, �B is
the field error, and xco denotes a closed-orbit distortion
driven by errors. Usually, only the �E=E0 term in Eq. (3) is
kept for synchrotron oscillations, but the �B term is also
important for symplectic descriptions. Different particles
pass through a fixed point, s, at different times and feel
different magnetic field strengths. Thus,

�B�t0 � �� � �B�t0� � _B�t0��: (4)

Since the �B�t0� term does not contain any canonical
variable, it affects only a closed orbit, but the _B term is
important. If this term is neglected, the necessary condition
for a symplectic description,

@�E0

@�E
�
@�0

@�
� 0; (5)

is not satisfied. Here, the primes denote differentiation with
respect to s. We can prove this condition by inserting
Hamilton’s equations of motion into Eq. (5). The x� term
shows a synchrobetatron coupling. We neglect this and the
closed-orbit distortions.

Inserting Eq. (3) into Eqs. (1) and (2), we obtain the
following energy and time equations:

d�E
ds

� e _BD
�E

�2
0E0

� eV�p�s� sc�fsin�� sin�0g; (6)
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: (7)

We note that �e _B�=��2
0E0� � _B=��0B0�� from the well-

known relation p0 � eB0�, where p0 is the momentum
of the synchronous particle. Because of the presence of _B,
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� is meaningful only inside the magnets and is equal to the
radius of curvature of the central orbit. Thus Eq. (5) is
satisfied. The above results were already obtained by the
present author [3]. The problem that we wish to clarify here
is the validity of the replacement of D=� by its one-turn
average, �. This replacement is exact for weak-focusing
synchrotrons. In strong-focusing synchrotrons, more ex-
planation is necessary. Actually, we will show that this
averaging is valid in the adiabatic approximation.

We can simply solve Eq. (6) outside the rf cavity and
obtain

�E�s� � �Ei exp
�
a
Z s

0

D�s0�
��s0�

ds0
�
; (8)

where

a � _B=�v0B0� (9)

is a constant in the present adiabatic approximation. We
put sc � 0 without loss of generality. The integral is per-
formed within the magnets because of the presence of _B.
We put � � ��s� in the integral (8) for the sake of clarity.
Here, �Ei is the value at the exit of the cavity. We insert
Eq. (8) into Eq. (7), which results in a first-order linear
inhomogeneous differential equation,
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We can solve Eq. (10) simply by the method of variable
constant,

��s� � exp��b~��s��
�
�i �

Z s

0

�
1

v0

�
D�s0�
��s0�

�
1

�2
0

�
�Ei
�2

0E0

� exp�2b~��s0��
�
ds0

�
;

(11)

where we put

2	R~��s� �
Z s

0
D�s0�=��s0�ds0; (12)

b � 2	Ra � 2	R _B=�v0B0�: (13)

Here, ~��2	R� � �, and R is the average radius of the
synchrotron.

We now expand the exponentials in Eqs. (8) and (11)
into a Taylor series and keep up to the first-order terms in
_B. We then obtain for one turn

�f � �i �
2	R
v0

�
��

1

�2
0

�
�Ei
�2

0E0

� b��i (14)

and
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�Ef � �Ei � eVfsin��0 � ��� � sin�0g � b��Ei;

(15)

where the subscript f denotes the value after one turn. We
use the following integrals:

Z 2	R

0
~��s�

D�s�
��s�

ds �
1

2
�2 (16)

and
Z 2	R

0
~��s�ds � 	�R: (17)

In Eq. (17), we use the fact that D�s�=��s� is periodic with
a period of 2	R. Thus, we obtain difference (one-turn
map) equations [(14) and (15)] for synchrotron oscillations
for the case where the magnetic fields are changing with
time (synchrotrons).

We now approximate these difference equations by dif-
ferential equations (smooth approximation) as

d�E
ds

	
�Ef ��Ei

2	R
; (18)

d�
ds
	
�f � �i

2	R
: (19)

Then, by changing the independent variable from s to

�s � R
�, we obtain

d�E
d
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where � � �� 1=�2
0 and !0 is the angular revolution

frequency. Combining Eqs. (20) and (21), we obtain an
equation for �,
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where the second-order term _B2 is consistently omitted.
We note that the _B terms appear only in the second or
higher order terms.

The arrival time at a fixed point has a strict physical
significance, but we usually use the rf phase. Here, we
make a brief comment on the rf-phase angle, � � �0 �
��. In the standing-wave picture, the particles feel an rf
field only at the position of the rf cavities. Thus, it is natural
to put �0 � !rf�t0�t0. Also, we put �� � !rf�t0�� to the
first order in �. Here,!rf�t� is the rf angular frequency. The
conventional definition � �

R
t !rf�t�dt is valid only for

the traveling-wave approximation. Using �� in Eq. (21),
combining the two as before, and neglecting the second
and higher order terms in the adiabatically changing var-
iables, we obtain after several steps

d
d
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0E0

h�!0
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d


�
�

eV
2	!0

fsin��0 � ��� � sin�0g;

(23)

where h is the harmonic number. If we put � � 1 (pure
bending field) and h � 1, this equation reduces to that by
McMillan. Also, if we approximate d
 � !0dt, Eq. (23)
reduces to the equation given by Courant and Snyder [4].
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