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Role of Elastic Stress in Statistical and Scaling Properties of Elastic Turbulence

Teodor Burghelea, Enrico Segre, and Victor Steinberg
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100 Israel

(Received 25 October 2005; published 31 May 2006)
0031-9007=
The role of elastic stress in statistical and scaling properties of elastic turbulence in a polymer solution
flow between two disks is discussed. The analogy with a small-scale magnetodynamics and a passive
scalar turbulent advection in the Batchelor regime is used to explain the experimentally observed
statistical properties, the flow structure, and the scaling of elastic turbulence. The emergence of a new
length scale, namely, the boundary layer thickness, is observed and studied.
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The discovery of elastic turbulence, a random flow in a
dilute polymer solution at arbitrary low Reynolds numbers,
Re, opens up a new possibility to study, both experimen-
tally and theoretically, the role of elastic stress in flow
dynamics [1]. The elastic stress is the main source of
nonlinearity in low Re polymer solution flows. An elastic
instability and further elastic turbulence show up when the
elastic energy overcomes the dissipation due to polymer
relaxation [1,2].

Elastic turbulence leads to sharp growth in flow resist-
ance, exhibits an algebraic decay in a wide range of scales
in the velocity power spectra, and provides a way for
effective mixing [1–3]. These properties are analogous to
those shown by hydrodynamic turbulence. This formal
similarity is the reason to coin this random flow as elastic
turbulence. However, it does not imply a similarity in the
physical mechanisms that underlie the two kinds of ran-
dom motion. Indeed, contrary to inertial turbulence at high
Re that occurs due to large Reynolds stress [4], large elastic
stress is the main source of nonlinearity and elastic turbu-
lence in low Re polymer solution flows [5]. One can
suggest that in an elasticity driven random flow the elastic
stress tensor, �p, should be the object of primary impor-
tance and interest. So, it may be appropriate to view the
elastic turbulence as turbulence of the �p field. In this case
it would be more relevant and quite instructive to explore
the spatial structure and temporal distribution of the elastic
stress. But there is currently no technique to conduct local
measurements of �p in a turbulent flow. On the other hand,
properties of the �p field in the boundary layer can be
inferred from measurements of an injected power, whereas
its local properties can be evaluated from measurements of
spatial and temporal distributions of velocity gradients.

The crucial step towards a theoretical description of
elastic turbulence is to relate the dynamics of �p to the
dynamics of a vector field with a linear damping [6–8]. As
was shown [6], the elastic stress tensor can be described as
uniaxial, (i.e., �ik � BiBk), if the contribution into �p due
to thermal fluctuations and polymer nonlinearity can be
neglected. Then one can write an equation for Bi in a
form that is similar to the equation for magnetic field in
06=96(21)=214502(4) 21450
magneto-hydrodynamics (MHD) [7]. Thus, in the case of a
visco-elastic flow one gets

@tB� �V � r�B � �B � r�V �B=�; (1)

where � is the polymer relaxation time. The distinction
with MHD shows up only in the relaxation term that
replaces the diffusion one. Otherwise, elastic turbulence
is analogous to a small-scale fast viscosity-dominated
magnetodynamics. The latter results from random stretch-
ing of the (nearly) frozen-in magnetic field lines by an
advecting random flow. In numerical simulations the mag-
netodynamics shows features very similar to those ob-
served in elastic turbulence [9]. Equation (1), when
complemented by the equation of motion written for Re�
1 as

rP � ��B � r�B� �r2V; (2)

and by the boundary conditions, reveals elastic instabil-
ity at Wi �Wic > 1 [10,11]. Here Wi � _�� is the
Weissenberg number. At Wi >Wic the instability eventu-
ally results in chaotic, statistically steady dynamics.
According to Ref. [6], a statistically steady state occurs
due to the backreaction of stretched polymers, [or the
elastic stress in Eq. (2)] on the velocity field. The latter
leads to a saturation of �p even for linear relaxation [6]. On
the other hand, the velocity gradients become smaller with
decreasing scale. This means that large-scale fluctuations
dominate in the flow. Their dynamics is determined by the
nonlinear interaction of modes on scales of the order of the
system size. So, the elastic stress is estimated as

�p � B2 � ��=��rV �
�=�
�

: (3)

The fluctuating velocity field and stress tensor (or B) can
both be decomposed into large-scale, V and B, and small-
scale, v and B0, components. Then the leading mechanism
for generation of the small scales is the advection of a fluid
element, which carries the elastic stress by the fluctuations
of the large-scale flow. Thus, this problem is reduced to a
linearly damped vector field problem with a dynamo effect
due to field stretching. The analysis of the equations for the
2-1 © 2006 The American Physical Society
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FIG. 1 (color online). PDFs of injected power fluctuations for
various Wi: squares, 40; circles, 31.5; up triangles, 24; down
triangles, 19; rhombs, 5. Upper inset: scaled average injected
power vs Wi. Lower inset: scaled rms of injected power vs Wi.
Squares present data taking in increasing Wi; open circles, in
decreasing Wi.
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small-scale fluctuations of both fields derived from Eqs. (1)
and (2) leads to a powerlike decaying velocity spectrum in
the wave number domain, k. In a spherical representation
this has a form E�k� � k�� with �> 3 [7], in a good
agreement with the experimental values � � 3:3–3:6 [1–
3]. The mechanism of stretching and folding of the elastic
stress field by a random advecting flow with the dynamo
effect and homogeneous attenuation of the stress field is
rather general. It is directly related to the Batchelor regime
considered a long time ago [12], where a passive scalar is
advected by a spatially smooth and random in time flow.
Since in elastic turbulence the velocity spectrum decays
faster than k�3, the exponent of both the velocity and
velocity gradients are determined by the vessel size. This
explains why the elastic turbulent flow is spatially smooth,
strongly correlated on the vessel size scale and random in
time. This is the main feature of the Batchelor regime in
hydrodynamic turbulence at scales below the dissipative
one [12]. By investigating the shape of the cross-
correlation function of the velocity field in elastic turbu-
lence it was found that the linear velocity field (locally
uniform rate of strain) well approximates it. This is a direct
confirmation of the fact that elastic turbulence is a single-
scale, spatially smooth, and random in time flow [13].

In this Letter we elucidate the role of the elastic stress in
the statistics and scaling of torque, in the statistics and
saturation of rms of vorticity (velocity gradients) in the
bulk, and in the structure and scaling of the velocity and
velocity gradient fields in the bulk and in the boundary
layer in elastic turbulence.

The experiments were conducted in a cylindrical con-
tainer mounted on a commercial rheometer (AR-1000 from
TA Instruments) with the rotating upper disk attached to its
shaft. The latter allowed precise control (within 0.5%) of
the disc angular velocity, �, measurements of the torque,
T, and torque fluctuations (� mode), or control of T and
measurements of � (T mode). The radii of the upper and
the lower plates were Ri � 4:8 cm and Rc � 4:9 cm, re-
spectively. They were separated by d � 2 cm unless oth-
erwise stated. For a swirling flow between disks, the shear
rate can be defined as _� � �Rc

d . As a working fluid, we
used a water-saccharose solution of 80 ppm by weight of
high molecular weight polyacrylamide (Mw � 18Mda,
from Polysciences). As a solvent, 65% by weight of sac-
charose in water was used, unless otherwise stated. The
viscosities of the solvent and of the polymer solution at
22 	C were �s � 113:8 mPa s and � � 137:7 mPa s, re-
spectively. The polymer relaxation time obtained from
small oscillation measurements varies as � / _��0:3 in the
range of shear rates _� � 0:4–3:6 s�1, being � � 3:8 s at
_� � 2 s�1 [14]. We conducted laser Doppler velocimetry

(LDV) measurements of azimuthal and vertical velocity
components (two-component Dantec LDA) and particle
image velocimetry (PIV) in a horizontal plane. In the latter
measurements the cell was illuminated laterally by a thin
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laser sheet through the transparent walls of the fluid con-
tainer between the plates. The sheet was 30 �m in the
center and about 130 �m thick at the edges of the setup. As
flow tracers, 10 �m fluorescent beads were used. We
acquired 2000 pairs of flow images with a digital camera
(PixelFly from PCO with 12 bit and 640
 512 pixels
resolution) every 120 ms with a time delay between con-
secutive images of 40 ms.

The fluctuations of the injected power, P � T�, were
measured for different Wi in the elastic turbulence regime
in two modes: � mode (P�) and T mode (PT). Probability
distribution functions (PDFs) of P�, normalized by the
maximum probability, are based on 1:8
 105 data points
for each value of Wi and presented for different Wi in
Fig. 1. We made three observations. First, the PDFs col-
lapse on a single curve in the reduced variables �P�=P

rms
� ,

where �P��P�� �P�. Second, they are strongly skewed
toward the negative values, and third, they exhibit expo-
nential tails. The upper inset in Fig. 1 presents the reduced
average injected power versus Wi. The plot exhibits a
powerlike dependence in the elastic turbulence regime
according to the fit: �P= �Plam /Wi0:49�0:05, where �Plam is
the injected power before the transition. The lower inset in
Fig. 1 shows the dependence of the reduced rms of the
power fluctuations, Prms=Prms

lam on Wi, together with the
fit /Wi3:2�0:3. In Fig. 2 we present PDFs of the normalized
accelerations calculated from the temporal LDV measure-
ments, �Y�t� � Yav
=Yrms, where Y�t� � dV�t�

dt V
�1
av . First, all

data for several Wi values collapse on a single curve.
Second, the PDFs show clear exponential tails. The left
inset in Fig. 2 shows the Wi dependence of rms of the
vorticity, !rms, scaled by �, at several locations along the
radius in the bulk of the flow. Since !rms � �, where � is
2-2
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FIG. 2 (color online). PDFs of normalized accelerations for
various Wi: full circles, 14; open circles, 16.2; full squares, 19.8;
open squares, 22.3; up triangles, 26.3; down triangles, 30.7;
rhombs, 38.9. Left inset: dependence of the scaled rms of
vorticity, !rms�, on Wi at several locations along radius r=Rc:
full squares, 0.2; open squares, 0.33; full circles, 0.4; open
circles, 0.5; rhombs, 0.66. Right inset: dependence of the scaled
velocity correlation time, �c=�, on Wi.
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the Lyapunov exponent of the Lagrangian trajectories, its
saturation in the elastic turbulence regime at Wi between
15 and 35 is consistent with the recent theoretical predic-
tion though here !rms� > 1 [6,7]. The latter means that,
probably, the nonlinearity of polymer elasticity also con-
tributes to the saturation of the elastic stress [15,16]. The
saturation of both �, already reported [17], and the reduced
velocity correlation time, �c=�, shown in the right inset in
Fig. 2 in the same range of Wi, just reinforces the obser-
vation. We investigated in detail the structure of horizontal
(near the top and bottom plates) and vertical (near the
walls) velocity boundary layers at different values of Wi
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FIG. 3 (color online). Normalized vertical profile of average
azimuthal velocity for several values of � s�1: full squares, 5;
circles, 4; up triangles, 3; down triangles, 2.5; rhombs, 2; open
squares, 1.5. Upper inset: w vs solution viscosity; solid line is the
fit w / �0:26�0:05. w is defined from intersection of linear fits for
bulk and near-the-wall parts of velocity profiles. Lower in-
set: scaled rms of velocity gradient in the boundary layer vs Wi.
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and fluid viscosity. In Fig. 3 we present the average
azimuthal velocity profiles in a vertical plane at r �
3Rc=4 normalized by its value at the disk, ~V	�z=d� �
V	�z=d�=V

up
	 , obtained by the LDV measurements in

65% saccharose solution at various �. The data for differ-
ent � collapse on a single curve after subtracting for each
curve the z dependence of the average velocity in the bulk.
Similar velocity profiles were also obtained for 60% and
50% saccharose solutions. It is clear from the data that the
boundary layer width, w, is independent of � for each
solution, and varies as a function of the solution viscosity
as w / �0:26�0:05 (upper inset in Fig. 3). In the lower inset
in Fig. 3 we show the rms of the azimuthal velocity
gradients, �@V	@r �

rms
bl , scaled by � and measured by PIVat z �

d=2 in the vertical boundary layer of d � 1 cm cell height
versus Wi. This was obtained from widths of distributions
of azimuthal velocity slopes in the boundary layer. We find
a clear increase of �@V	@r �

rms
bl �� 1 with Wi in the boundary

layer in contrast to its saturation in the bulk (see Fig. 2) in
the same range of Wi. Moreover, a well-pronounced peak
in the radial dependence of �@V	@r �

rms inside the boundary
layer width was also observed. Its position does not depend
on Wi, while its normalized values at the peak, �@V	@r �

rms
max�,

are up to 2 orders of magnitude larger than the bulk value,
(the data are not shown, see Ref. [18]). Using PIV data one
can also calculate the structure functions of the velocity
gradients as Sp�r� � hj

@V	�r0�r�
@r � @V	�r0�

@r j
pir0

shown in
Fig. 4. The structure functions of !, P�, and PT , were
also calculated. In analogy with inertial turbulence, we
looked for a scaling of Sp�r� in the range of scales corre-
sponding to the algebraic decay of the velocity spectra
[1,2,14,19] in the form: Sp�r� � r
p . The dependence of
the normalized scaling exponent, 
p=
4, on the order of the
FIG. 4 (color online). Structure functions of velocity gradient
of p order up to p � 6 as a function of the scaled radius.
Inset: normalized scaling exponent vs p for: injected power
P�, full circles; injected power PT , open circles; passive scalar,
full squares; vorticity, open squares; velocity gradient, up tri-
angles.
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structure functions, p, is presented in the inset in Fig. 4 for
all flow parameters mentioned above. The dependencies
are rather close to that obtained for a passive scalar in
elastic turbulence, based on our published data [14,20]. So,
all dependencies of 
p=
4 on p are nonlinear which implies
anomalous scaling and strong deviation from the Gaussian
distribution.

How can we put together all these pieces of information?
We postulate that the elastic stress is accumulated near the
wall due to a constant flux of momentum from the upper
boundary. Its excess is intermittently injected into the bulk.
Every time elastic stress is injected from the boundary
layer into the bulk, the power on the disc reduces. This is
a possible origin of the observed exponential tails and of
the skewness toward small values of PDFs of the injected
power �P�=P

rms
� . The exponential tails in the PDF of the

velocity gradients can be also explained in the same way.
Symmetry of the PDF is preserved due to injections from
both the upper and lower boundary layers. However, the
most surprising and striking feature of elastic turbulence
observed is the presence of the velocity boundary layer and
the emergence of a new length scale.

The picture presented is in close analogy with the tur-
bulent advection of a passive scalar in the Batchelor re-
gime in a finite channel flow, where the excess of tracer
from the boundary layer is intermittently injected into
the bulk [20,21]. In this case, the mixing boundary layer
and the new length scale appear due to the existence of
a small parameter, the inverse Peclet number, Pe�1 �
�D=VrmsL� � 1, where D is the diffusion constant and L
is the channel width. Then, as predicted theoretically [21]
and confirmed experimentally [20], the mixing boundary
layer is found to be lmix / Pe�1=4.

Exploring further the analogy with the passive scalar
problem, one can suggest that here also a small parameter
in the problem defines a new length scale. Since the
diffusion does not play any significant role in elastic tur-
bulence, K � �@V	@r �

rms
bulk=�

@V	
@r �

rms
bl � 1 can be considered as a

small parameter. This small parameter also defines the
ratio of polymer stretching in the bulk and in the boundary
layer. Thus, the width of the boundary layer for the elastic
stress, based on these considerations and on the experi-
mental observation, scales like w / K��1=4. The analogy
in the statistics and scaling of the passive scalar and of the
elastic stress due to advection by a smooth random flow is
reinforced by the similarity in the statistical behavior pre-
sented in Fig. 4.

The saturation of the elastic stress in the bulk naturally
explains the scaling �P

�Plam
�Wi0:49, presented in Fig. 1.

Indeed, the injected power is proportional to the torque.
The latter is just the shear stress averaged over the upper
plate, and in the elastic turbulence regime it is solely
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defined by the elastic stress in the bulk [5]. As we dis-
cussed, in elastic turbulence the latter saturates [see
Eq. (3)]. On the other hand, it was found that due to shear
thinning of the polymer solution used, one gets ����0:3

[11,14]. Thus, the theoretically expected growth of the
mean injected power with respect to its laminar value,
�Plam, should be solely due to the bulk elastic stress and
have the following power-law scaling: �P

�Plam
� �p �

�
��

�0:3 �Wi0:43. This is rather close to the experimentally
observed scaling.
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