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The low-energy properties of the one-dimensional anyon gas with a �-function interaction are discussed
in the context of its Bethe ansatz solution. It is found that the anyonic statistical parameter and the
dynamical coupling constant induce Haldane exclusion statistics interpolating between bosons and
fermions. Moreover, the anyonic parameter may trigger statistics beyond Fermi statistics for which the
exclusion parameter � is greater than one. The Tonks-Girardeau and the weak coupling limits are
discussed in detail. The results support the universal role of � in the dispersion relations.
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Anyons, which are used to describe particles with gen-
eralized fractional statistics [1,2], are becoming of increas-
ing importance in condensed matter physics [3] and
quantum computation [4]. The concept of anyons provides
a successful theory of the fractional quantum Hall (FQH)
effect [5]. In particular, the signature of fractional statistics
has recently been observed in experiments on the elemen-
tary excitations of a two-dimensional electron gas in the
FQH regime [3]. These developments are seen as promis-
ing opportunities for further insight into the FQH effect,
quantum computation, superconductivity, and other funda-
mental problems in quantum physics.

In one dimension, collision is the only way to inter-
change two particles. Accordingly, interaction and statis-
tics are inextricably related in 1D systems. The 1D
Calogero-Sutherland model is seen to obey fractional ex-
clusion statistics [6,7]. In the sense of Haldane exclusion
statistics, the 1D interacting Bose gas is equivalent to the
ideal gas with generalized fractional statistics [8,9]. We
consider an integrable model of anyons with a �-function
interaction introduced and solved by Kundu [10]. Here we
obtain the low-energy properties and Haldane exclusion
statistics of this 1D anyon gas. We find that the low
energies, dispersion relations, and the generalized exclu-
sion statistics depend on both the anyonic statistical and the
dynamical interaction parameters. The anyonic parameter
not only interpolates between Bose and Fermi statistics,
but can trigger statistics beyond Fermi statistics in a super
Tonks-Girardeau (TG) gaslike phase.

Bethe ansatz solution.—We consider N anyons with a
�-function interaction in one dimension with Hamiltonian
[10]
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and periodic boundary conditions (BC). Here, m denotes
the atomic mass, g1D is the coupling constant, and x is a
coordinate in length L. �y�x� and ��x� are the creation
and annihilation operators at point x satisfying the anyonic
commutation relations

��x1��
y�x2� � e�i�w�x1;x2��y�x2���x1� � ��x1 � x2�;

�y�x1��
y�x2� � ei�w�x1;x2��y�x2��

y�x1�: (2)

Here the multistep function w�x1; x2� � �w�x2; x1� � 1
for x1 > x2, with w�x; x� � 0. The coupling constant is
determined by g1D � @

2c=m, where the coupling strength
c is tuned through an effective 1D scattering length a1D via
confinement in experiments. Hereafter we set @ � 2m � 1
for convenience. We also use a dimensionless coupling
constant � � c=n to characterize different physical re-
gimes of the anyon gas, where n � N=L is the linear
density.

In contrast to the 1D Bose gas [11], Hamiltonian (1)
exhibits both anyonic statistical and dynamical interac-
tions, which can map into a 1D interacting Bose gas with
multi-�-function and momentum-dependent interactions
[10]. In Ref. [12] the authors have proposed a way to
observe the fractional statistics of anyons in a system of
ultracold bosonic atoms in a rapidly rotating trap.

Define a Fock vacuum state ��x�j0i � 0 and assign all
particle coordinates xi in an order x1 � x2 � � � � � xN.
The N-particle eigenstate is

j�i �
Z L

0
dxNe�ikN=2��x1 . . . xN��y�x1� . . . �y�xN�j0i;

(3)

where the Bethe ansatz wave function is written as

��x1 . . . xN� � e
�ik=2
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Here the sum extends over all N! permutations P. In the
N-particle eigenstate the order with which the particles
are created incurs the phase factor in the wave function
(4). Integration involves the changes of the order in creat-
ing particles due to the permutation of coordinates. We
easily see that the wave function satisfies the anyonic
symmetry ��� � � xi � � � xj � � �� � e�i���� � � xj � � � xi � � ��,
in which the anyonic phase � � �	

Pj
k�i�1 w�xi; xk� �Pj�1

k�i�1 w�xj; xk�
 for i < j. We extract a global phase
factor e�i�N=2 in order to symmetrize the anyonic phase
factor in the wave function (4) so that it has �! �� 4�
symmetry. The eigenstate still has �! �� 2� symmetry.
However, the phase factors in the multivalued wave func-
tion (4) are diminished by those from permutations of the
particles in the eigenstate j�i such that the integrand in (3)
is single valued.

Solving the eigenvalue problem for Hamiltonian (1)
reduces to solving the quantum mechanics problem
HN��x1 . . . xN� � E��x1 . . . xN�, where
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describes the 1D �-function interacting quantum gas of N
anyons confined in a periodic length L.

The N! coefficients A�kP1 . . . kPN� are obtained via

the two-body scattering relation A�. . . kj; ki . . .� �
kj�ki�ic0

kj�ki�ic0 A�. . . ki; kj . . .�, which follows from the disconti-

nuity condition in the derivative of the wave function and
the condition to ensure a continuous probability density
with regard to the eigenstate (3). Here the anyonic parame-
ter � and the dynamical interaction c are inextricably
related via the effective coupling constant c0 �
c= cos��=2� [10]. This results in a resonancelike effect in
the effective coupling constant c0 with respect to the sta-
tistical interaction around � � �, see Fig. 1.
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FIG. 1 (color online). The effective coupling constant c0 (in
units of c) vs the anyonic parameter �. A key feature of the
model is that the anyonic statistical interaction induces a reso-
nancelike behavior where the interaction strength becomes very
large.
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Applying the periodic BC ��x1 � 0; x2 . . . xN� �
��x2 . . . xN; x1 � L�, leads to the eigenvalue E �PN
j�1 k

2
j , where the individual quasimomenta kj satisfy

the Bethe ansatz equations (BAE)

e ikjL � �ei��N�1�
YN
l�1

kj � kl � ic0

kj � kl � ic0
(6)

for j � 1; . . . ; N. These equations differ slightly from
those of Ref. [10]. The Bethe roots kj are real for c0 > 0,
but may become complex for c0 < 0. In this way we see
that the 1D interacting anyons with periodic BC are equiva-
lent to a 1D �-function interacting Bose gas with twisted
BC, where the interaction strength is tuned via c0.

For � � 0 the BAE (6) reduce to those of the 1D Lieb-
Liniger Bose gas [11]. When � � � the BAE characterize
free fermions. When c � 0 the anyons may collapse into a
condensation state with purely anyonic statistical interac-
tion. In general the extra phase factor in the BAE (6),
picking up the statistical interaction during the scattering
process, shifts the system into higher excitation states, as if
there exists a self-sustained Aharonov-Bohm-like flux
[13]. The total momentum is p � N�N � 1��=L�
2d�=L, where d is an arbitrary integer. In minimizing
the energy we consider ��N � 1� � � (mod 2�) in the
phase factor with �� � � � �. Each quasimomentum kj
shifts to kj � �=L in the ground state. In the thermody-
namic limit, the lowest energy is given by E �
N�n2e��; �� � �2=L2�, where e��; �� � �3

	3

R
1
�1 g�x�x

2dx.
The root density g�x� and the parameter 	 � c=Q, where
Q is the cutoff momentum, are determined by Lieb-
Liniger-type integral equations
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FIG. 2 (color online). The lowest energy e��; �� in units of n2

obtained from the integral Eq. (7). For 0< �<� the energy
curve interpolates between interacting bosons at � � 0 and free
fermions at � � � (dashed line). For �< �< 3� the effective
interaction c0 is negative. The super TG gaslike phase is seen in
the strong coupling limit �� 1. For 3�< �< 4� the interpo-
lation is from free fermions to interacting bosons.
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Figure 2 shows the energy e��; �� evaluated numerically
from (7) for � > 0 and � 2 	0; 4�
.

Low-energy behavior.—The low-energy behavior pro-
vides significant insight into the nature of the anyonic
statistics interaction and the dynamical interaction. In
this model the effective coupling constant c0 implements
the transmutation between statistical and dynamical inter-
actions. In the weak coupling limit �� cos��=2�, the
leading term for the lowest energy per particle is obtained
from the BAE (6) as E=N � �N � 1�c0=L� �2=L2. Here
the anyonic statistics shift the energy upwards and the
energy increases faster than the ground state energy of
the pure Bose gas as � increases. The fractional statistics
are mutual, i.e., the Haldane exclusion parameter discussed
below is not a constant.

The experimental realization of the TG gas [14] has shed
further light on the quantum nature of 1D many-body
systems. In particular, on the fermionization of bosons in
one dimension, which can be experimentally realized via
tuning the interaction strength. The generalized exclusion
statistics vary from Bose statistics to Fermi statistics during
the fermionization process. This may provide opportunities
to investigate generalized exclusion statistics in future
experiments. In the TG regime, i.e., �� 1, the anyonic
statistical interaction may trigger another regime in which
the density-density correlations are more strongly corre-
lated than in the TG gas, namely, the super TG gas [15,16].
Here this super TG gaslike phase is seen to be stable
because there exists a large kinetic energy inherited from
the TG phase as the anyonic parameter � is tuned smoothly
from � < � to � > �. In this way, the hard core behavior
of the particles with Fermi-like pressure prevents the col-
lapse of the super TG phase. The statistics-induced super
TG phase (�< �< 3�) appears only in the strong cou-
pling limit. It may become unstable as the interaction
strength becomes weaker due to the appearance of bound
states. In general the anyonic parameter � implements a
range of different statistical phases, from the Bose gas to
the TG gas, from the free Fermi phase to the super TG
phase.

In the TG regime the lowest energy per particle is
E0=N 


�2

3L2 �N2 � 1�	1� 4��1 cos��=2�
 � �2=L2 with
the impenetrable fermionic distribution f�k2m;m �
1; . . . ; �N � 1�=2g for odd N, where kl �

l�
L �

	1� 2��1 cos��=2�
 � �=L. In the thermodynamic limit
and at zero temperature, the last term in E0=N can be
ignored compared to the kinetic and interaction energies.
Now consider the effect of the anyonic statistical interac-
tion on the linear dispersion relation for the lowest excita-
tion. The elementary lowest excitation is obtained by
moving the largest quasimomentum kN from the Dirac
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sea to kN � p. To O�p2�, the low-lying excitation close
to the Fermi point

E � E0 � p
�

2�N � 1��
L

�
1�

4 cos��=2�

�

�
�

2�
L

�
(8)

follows from the discrete BAE (6). The dispersion remains
linear, with sound velocity vc � vF	1� 4��1 cos��=2�

as p! 0 in the thermodynamic limit. In the above equa-
tion, the term 2p�=L is irrelevant. Here the Fermi velocity
vF � 2�n. The finite-size corrections to the lowest energy
in the thermodynamic limit for strong coupling are directly
given by E0�N;L� � Le

�1�
0 � � �Cvc

6L �O�1=L
2�with cen-

tral charge C � 1.
The thermodynamic BAE (TBA) is the key equation for

understanding Haldane exclusion statistics of the model.
Following the Yang-Yang approach [17], the TBA and the
thermodynamic potential are given by


�k��
0�k����
T

2�

Z 1
�1
dk0�0�k�k0� ln�1�e�
�k

0�=T�;

(9)

� � �
T

2�

Z 1
�1

dk ln�1� e�
�k�=T�: (10)

Here T is the temperature, 
�k� is the dressed energy,
�0�x� � 2c cos��=2�

c2�cos2��=2�x2 , and 
0�k� � �k� �=L�2. In general

this TBA result is only valid for the case c0 > 0. We also
consider the TBA to be valid for the super TG gas phase,
when bound states do not form.

Haldane exclusion statistics.—The crucial point of
Haldane exclusion statistics is that the number of avail-
able single-particle states of species i, denoted by di,
depends on the number of other species fNjg when adding
one particle of the ith species to the system while keep-
ing the boundary conditions unchanged [2]. Following
Refs. [8,18], we define

di�fNjg� � G0
i �

X
j

�ijNj: (11)

Here G0
i � di�f0g� is the number of available single-

particle states with no particles present in the system,
called the bare number of available single-particle states.
Haldane [2] defined the fractional statistical interactions
�ij through a linear relation �di=�Nj � ��ij with total
number of particles N �

P
jNj. As remarked in Ref. [8],

this definition allows different species to refer to identical
particles with different momenta. The total energy is given
by E �

P
iNi
i, where 
i is the energy of a particle of

species i. For the ideal gas with no mutual statistics �ij �
��ij. The statistical distribution is then given by ni �
1=�e �
i=T � ��, where the function �
i satisfies [8]

�
 i � T�1� �� ln�1� e
�
i=T� � 
i ��: (12)

The exclusion statistics are clearly seen from this relation.
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For instance, � � 0 and � � 1 are Bose and Fermi statis-
tics, respectively.

In order to apply Haldane statistics to the anyon model
(1), we take a similar approach as that used for the inter-
acting Bose gas [8]. At zero temperature there are no holes
in the ground state. Excitations arise from moving quasi-
momenta out of the Dirac sea. Particle excitations leave di
holes in a momentum interval �ki. Thus all accessible
states in �ki are Di � L��� �h��ki. � and �h are the
density of occupied states and the density of holes in
interval �ki, respectively. For an arbitrary state, the BAE
(6) become

�� �h �
1

2�
�

1

2�

Z 1
�1

dk0�0�k� k0���k0�: (13)

On the other hand, from the definition di in (11), we have
G0
i � �kiL=2�, so substituting di into Di � di � Ni � 1

in the thermodynamic limit gives

�� �h �
1

2�
�
Z 1
�1
	��k; k0� � ��k; k0�
��k0�dk0: (14)

Comparison of (13) and (14) thus gives [19]

�ij :� ��k; k0� � ��k; k0� �
1

2�
�0�k� k0�: (15)

It is clearly seen that the leading order of the off-
diagonal contribution to ��k; k0� is proportional to �k�
k0�2=c3 at low temperatures as c! 1. Here we require that
the dynamical interaction c overwhelms the thermal fluc-
tuations. It follows that the exclusion statistics ��k; k0� 

���k; k0� are independent of the quasimomenta at low
temperatures. From (14) and the root distributions for the
ground state, we thus find the Haldane exclusion statistics
parameter � 
 1� 2��1 cos��=2�. The above relations
suggest that � � ���h�k�=���k�. The meaning of � is
that one particle excitation is accompanied by � hole
excitations. It is interesting to note that the super TG phase
corresponds to exclusion statistics with �> 1 as �< �<
3�. From the roots of the BAE (6) we have the relation
�ki � ki�1 � ki �

2�
L ��� l�, where l is a positive integer

for an arbitrary state. This relation was also noticed in the
study of exclusion statistics in the Calogero-Sutherland
model [6,7] and provides further evidence for its universal-
ity [20]. Further, the quasiparticle dispersion relation can
be expressed as E� E0 
 �p2 � 2kFp��2 as p! 0,
where kF � n� is the Fermi momentum.

It is clear to see from (12) that as T ! 0, n�k� 
 1=� if

0�k� � �0, where �0 
 k2

F�
2 is the chemical potential at

T � 0. Also n�k� � 0 if 
0�k�>�0. These results coincide
with the BAE result for ��k� via the relation ��k� �
g0�k�n�k� with g0�k� � 1=2� at zero temperature. On the
other hand, in the weak coupling limit c0 ! 0, the quasi-
momentum distributions are not uniform. The mutual sta-
tistics are governed by ��k; k0� 
 � c0

��k�k0�2
. Thus, if

c � 0, one recovers Bose statistics.
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To conclude, we have derived the low-energy properties
and the Haldane exclusion statistics of the 1D integrable
anyon gas. We have given analytic expressions for the
ground state energy, dispersion relations, finite-size cor-
rections, and the Haldane statistical parameter and have
explicitly considered the strong and weak coupling re-
gimes. We found that the anyonic statistical interaction
and the dynamical interaction implement a continuous
range of Haldane exclusion statistics, from Bose statistics
to Fermi statistics and beyond.
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