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Many real-world networks are characterized by adaptive changes in their topology depending on the
state of their nodes. Here we study epidemic dynamics on an adaptive network, where the susceptibles are
able to avoid contact with the infected by rewiring their network connections. This gives rise to assortative
degree correlation, oscillations, hysteresis, and first order transitions. We propose a low-dimensional
model to describe the system and present a full local bifurcation analysis. Our results indicate that the
interplay between dynamics and topology can have important consequences for the spreading of

infectious diseases and related applications.
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In the physical literature the dynamics of complex net-
works has recently received much attention, with many
applications in social, biological, and technical systems
[1,2]. In particular, most research has been directed in
two distinct directions. On the one hand, attention has
been paid to the structure of the networks, revealing that
simple dynamical rules, such as preferential attachment
or selective rewiring, can be used to generate complex
topologies [3—6]. Many of these rules are not only a useful
tool for the generation of model graphs, but are also
believed to shape real-world networks like the internet or
the network of social contacts. On the other hand, research
has focused on large ensembles of dynamical systems,
where the interaction between individual units is described
by a complex graph [7-15]. These studies have shown that
the network topology can have a strong impact on the
dynamics of the nodes, e.g., the absence of epidemic
thresholds on scale free networks [7,8] or the detrimental
effect of assortative degree correlations on targeted vacci-
nation [12]. In the past the cross fertilization between these
two lines of thought has led to considerable advances.
However, the dynamics of networks and the dynamics on
networks are still generally studied separately. In doing so,
a characteristic features of many real-world networks is not
taken into account, namely, the ability to adapt the network
topology dynamically in response to the dynamic state of
nodes [16-19].

Consider, for example, the spreading of an infectious
disease on a social network. Humans tend to respond to the
emergence of an epidemic by avoiding contacts with in-
fected individuals. Such rewiring of the local connections
can have a strong effect on the dynamics of the disease,
which in turn influences the rewiring process. Thus, a
complicated mutual interaction between a time varying
network topology and the dynamics of the nodes emerges.

In this Letter we study a susceptible-infected-
susceptible (SIS) model on an adaptive network. We dem-
onstrate that a simple intuitive rewiring rule for the net-
work connections has a profound impact on the emerging
network, and is able to generate specific network properties
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such as a wide degree distribution, assortative degree cor-
relations, and the formation of two loosely connected
subcompartments. The dynamical consequences are the
emergence of new epidemic thresholds (corresponding to
first order transitions), the coexistence of multiple stable
equilibria (leading to hysteresis), and the appearance of an
oscillatory regime, all of which are absent on static SIS
networks.

We consider a network with a constant number of nodes,
N, and bidirectional links, K. The nodes represent indi-
viduals, which are either susceptible (S) or infected (I). In
every time step and for every link connecting an infected
with a susceptible (SI link), the susceptible becomes in-
fected with the fixed probability p. The Infected recovers
from the disease with probability r, becoming susceptible
again. In addition, we allow susceptible individuals to
protect themselves by rewiring their links. With probability
w for every SI link, the susceptible breaks the link to the
infected and forms a new link to another randomly selected
susceptible. Double connections and self-connections are
not allowed to form in this way.

To study the effect of adaptive rewiring consider the
threshold infection probability p* that is necessary to
maintain a stable epidemic. On a random graph without
rewiring (w = 0) the basic reproductive number, which
denotes the secondary infections caused by a single in-
fected node on an otherwise susceptible network is Ry =
plky/r, where (k) = 2K /N is the mean degree of the nodes
[20]. Demanding that exactly one secondary infection is
caused yields p* = r/(k). If rewiring is taken into account
a single infected node will on average lose a constant
fraction w of its links. Therefore the degree of such a
node can be written as k(r) = (k)exp(—wr), where ¢ is
the time since infection. By averaging over the typical
lifetime 1/r of an infected node, we obtain the threshold
infection rate

w

P I = expl—w/ ] W

Note that this corresponds to p* = r/(k) for w = 0, but
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p* = w/{k) for w > r. Thus, a high rewiring rate can
significantly increase the epidemic threshold and thereby
reduce the prevalence of the epidemic.

In comparison, the effect of adaptive rewiring on the
topology is more subtle. Let us first consider the trivial case
in which rewiring is independent of the state of the nodes
(Fig. 1, left). In this case the degree distribution becomes
Poissonian and the average degree (k,,,) of the next neigh-
bors of a given node is independent of the degree k, as one
would expect in a static random graph.

Now, assume that the adaptive rewiring rule described
above is used, but the local dynamics is switched off, r =
p =0, (Fig. 1, center). In this case the density of the
infected, i, and the susceptibles, s = 1 — i, stays constant
[21]. However, the number of SI links is reduced system-
atically over time until the network has split into two
disconnected clusters, one of which is occupied by the
infected while the other is occupied by the susceptibles.
Assuming that we start with a random graph, the per capita
densities of SS, II, and SI links are initially I = s%(k)/2,
Iy = i%(ky/2, and I = (k)/2 — lss — Iy = si(k), respec-
tively. With adaptive rewiring, in the stationary state all SI
links have been converted into SS links so that Igg = (1 —
i?){(k)/2 and Ig; = 0. Consequently, the susceptibles and
the infected assume different degree distributions py, in
which the mean degree of a susceptible node is (kg) =
(1 + i)k) and the mean degree of an infected node is
(ki) = (k). While both clusters are still individually

FIG. 1. Structure of adaptive networks. Plotted is the mean
nearest-neighbor degree (k,,) (top) and the degree distribution
pi for susceptibles (bottom, circles) and infected (bottom, dots)
depending on the degree k. (Left) Indiscriminate rewiring: the
network is a random graph with Poissonian degree distributions
and vanishing degree correlation. (Center) No local dynamics
(p = r = 0): the infected and the susceptibles separate into two
unconnected random subgraphs. (Right) Adaptive network with
rewiring and local dynamics (w = 0.3, » = 0.002, p = 0.008):
the degree distributions are broadened considerably and a strong
assortative degree correlation appears. The plots correspond to
N =10° K = 10°.

Poissonian, the susceptible cluster has a higher connectiv-
ity. Since (k,,) is independent of k in each of the two
clusters, the degree correlation within the cluster vanishes.
However, a considerable net degree correlation 7.y, > 0
[22] can arise if both clusters are considered together
because (k,,) is larger for the susceptible cluster.

Finally, consider the case with both adaptive rewiring
and epidemic dynamics (Fig. 1, right). Even though rewir-
ing is not fast enough to separate infected and susceptible
completely, it still structures the system into two loosely
connected clusters of susceptibles and infected (e.g., Ig; =
0.01¢k) in the figure). While intercluster connections are
continuously removed by rewiring, new ones are formed
by recoveries in the infected cluster and infections in the
susceptible cluster. This leads to large temporal fluctua-
tions in the degree of a node. As long as an individual is
susceptible, its degree is increasing approximately linear in
time, k = wlg;, due to the rewiring activity of the other
susceptibles. In contrast, the degree of infected decays
exponentially, kK ~ —wk. In this way, a complicated dy-
namical equilibrium can form in which the average number
of intercluster and intracluster links as well as the density
of susceptibles and infected stays constant. In this equilib-
rium the continuous rewiring of connections leads to
broadened degree distributions for both infected and sus-
ceptibles and a positive (assortative) degree correlation.

The effect of adaptive rewiring on the emerging network
structure is further quantified in Fig. 2. With increasing w
the degree correlation grows rapidly. Moreover, the mean
degree of the susceptibles increases while the degree of the
infected decreases slightly. Even more pronounced is
the increase in the variance of the degree distribution of
the susceptibles, e.g., for w = 0.6 the variance o rises by

FIG. 2. Degree correlation index r.,, [22] as a function of the
rewiring rate (top). Furthermore, the mean w (center) and the
variance ¢ (bottom) of the degree distributions for the suscep-
tibles (circles) and the infected (dots) are shown. Both quantities
have been normalized with respect to their values in a random
graph without rewiring, @& and &2, respectively. The plots
correspond to N = 105, K = 10°, » = 0.002, p = 0.008.
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a factor of 100 in Fig. 2. This indicates the formation of
strongly connected hubs and temporarily isolated nodes,
which are rapidly reconnected because of rewiring.

As we have shown, adaptive rewiring promotes the
isolation of infected individuals, which can significantly
increase the epidemic threshold. However, in doing so
rewiring introduces a mixing of connections in the popu-
lation and also leads to the formation of a highly connected
susceptible cluster, which is characterized by a large vari-
ance of the degree distribution and hence has a lower
epidemic threshold. Therefore the local effect of rewiring
tends to suppress the epidemic while the topological effect
promotes it. In order to investigate the dynamics caused by
the opposing effects of rewiring it is useful to consider a
low-dimensional model. From the discussion above both
the dynamic state and the topological structure of the net-
work can be described in terms of the mean field quantities
i and Igg and Ij;. To describe the time evolution of these
variables we apply the moment closure approximation
proposed in Ref. [23]. In this pair approximation the den-
sity of all triples [/ ;. in the network with the respective
states a, b, ¢ € [S, 1] are approximated by I, = l,1p./b,
i.e., as the product of the number of ab links [,;, and the
probability /,./b that a given node of type b has a bc link.
This leads to a system of three coupled ordinary differen-
tial equations

d

— i = plg — ri, 2

T Dlsy 2)
d Lsy
— Iy = plgg|— + 1) = 2rly, 3)
dt s

d

—lgs = (r + w)lg; — 4)
dt

2plgilss
—
The first term in Eq. (2) describes the infection of suscep-
tible individuals, while the second term describes recovery.
These two processes also effect the dynamics of the links.
The first term in Eq. (3) corresponds to the conversion of SI
links into II links as a result of new infections while the
second term represents the conversion of II links into SI
links as a result of recovery. Equation (4) is analogous
except that the conversion of SI links into SS links by
rewiring has been taken into account.

In Fig. 3 the analytical results from the low order model
are compared with direct numerical simulations of the full
model. Without rewiring, there is only a single, continuous
dynamical transition, which occurs at the well-known epi-
demic threshold p*. As the rewiring is switched on, this
threshold increases in perfect agreement with Eq. (1).
While the epidemic threshold still marks the critical pa-
rameter value for invasion of new diseases another, lower
threshold, corresponding to a saddle-node bifurcation, ap-
pears. Above this threshold an already established epi-
demic can persist (endemic state). In contrast to the case

without rewiring the two thresholds correspond to discon-
tinuous (first order) transitions. Between them a region of
bistability is located, in which the healthy and endemic
state are both stable. Thus, a hysteresis loop is formed.
Our numerical simulations show that the presence of a
hysteresis loop and first order transitions is a generic
feature of the adaptive model and can be observed at all
finite rewiring rates. While increasing the rewiring rate
hardly reduces the size of the epidemic in the endemic
state, the nature of the persistence threshold changes at
higher rewiring rates. First, a subcritical Hopf bifurcation,
which gives rise to an unstable limit cycle replaces the
saddle-node bifurcation. At even higher rewiring rates this
Hopf bifurcation becomes supercritical. Since the emerg-
ing limit cycle is now stable, the Hopf bifurcation marks a
third threshold at which a continuous transition to oscil-
latory dynamics occurs. However, these oscillations can
only be observed in a relatively small parameter region
(see Figure 4) before the persistence threshold is encoun-
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FIG. 3. Bifurcation diagram of the density of the infected i* as
a function of the infection probability p for different values of
the rewiring rate w. In each diagram i* has been computed
analytically from Egs. (2)—(4) (thin lines). Along the stable
branches these results have been confirmed by the explicit
simulation of the full network (circles). Without rewiring only
a single continuous transition occurs at p* = 0.0001 (a). By
contrast, with rewiring a number of discontinuous transitions,
bistability, and hysteresis loops (indicated by arrows) are
observed (b), (c), (d). Fast rewiring (c), (d) leads to the emer-
gence of limit cycles (thick lines indicate the lower turning point
of the cycles), which have been computed numerically with the
bifurcation software AUTO [24]. Parameter values N = 10°, K =
10°, and r = 0.002.
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FIG. 4. Two parameter bifurcation diagram showing the de-
pendence on the rewiring rate w and the infection probability p.
In the white and light gray regions there is only a single attractor,
which is a healthy state in the white region and an endemic state
in the light gray region. In the medium gray region both of these
states are stable. Another smaller region of bistability is shown in
dark gray. Here, a stable healthy state coexists with a stable
epidemic cycle. The transition lines between these regions
correspond to transcritical (dash-dotted), saddle-node (dashed),
Hopf (continuous), and cycle fold (dotted) bifurcations. The
transcritical bifurcation line agrees very well with Eq. (1).
Note that the saddle-node and transcritical bifurcation lines
emerge from a cusp bifurcation at p = 0.0001, w = 0.
Parameters are as in Fig. 3.
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tered, which now corresponds to a fold bifurcation of
cycles.

In summary, we have shown that the interplay between
the dynamics and topology of an adaptive network can give
rise to rich dynamics. Here we have studied only the
simplest example of an adaptive network, in which the
number of nodes and links remains constant and the local
dynamics is simple. Nevertheless, the adaptive nature of
the system gives rise to dynamical features, like bistability
and cycles. While we observe stable oscillations only in a
small parameter region, the fact that they already appear in
this simple example indicate that they can also be expected
in more complex models. In fact, we have found much
larger oscillatory regions in other model variants with
different rewiring rules. Besides epidemic dynamics our
findings also have strong implications for the spreading of
information, opinions and beliefs in a population, which
can be described in a similar way.

For the control of real-world diseases adaptive rewiring
is beneficial since it increases the invasion threshold and
also the persistence threshold for epidemics. However, the
topological changes that are induced as a natural response
to an emerging disease are cause for concern. The topology
at the peak of a major epidemic can be very different from
that in the disease-free state. In particular, positive degree
correlations can rapidly arise, reducing effectiveness of

targeted vaccination. Further, the formation of a densely
linked cluster of susceptibles at high infection densities can
enable the persistence of diseases which would not be able
to persist at low infection densities. Therefore, a disease
which seems to be a minor problem while it is rare can be
very difficult to combat once it has reached an endemic
state.
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