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Passage Times for Unbiased Polymer Translocation through a Narrow Pore
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We study the translocation process of a polymer in the absence of external fields for various pore
diameters b and membrane thickness L. The polymer performs Rouse and reptation dynamics. The mean
translocation time h�ti that the polymer needs to escape from a cell and the mean dwell time h�di that the
polymer spends in the pore during the translocation process obey scaling relations in terms of the polymer
length N, L, and b=Rg, where Rg is the radius of gyration for the polymer. We explain these relations using
simple arguments based on polymer dynamics and the equilibrium properties of polymers.
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Transport of molecules across membranes is an essential
mechanism for life processes. These molecules are often
long, and the narrow pores in the membranes do not allow
them to pass through as a single unit. They have to thus
squeeze—i.e., translocate—themselves through the pores.
DNA, RNA, and proteins are such naturally occurring long
molecules [1–5] in a variety of biological processes.
Translocation is used in gene therapy [6,7] and in delivery
of drug molecules to their activation sites [8,9]. Under-
standably, the process of translocation has been an active
topic of current research not only because it is a corner-
stone of many biological processes, but also due to its
relevance for practical applications.

Translocation is a complicated process in living organ-
isms—the presence of chaperon molecules, pH, chemical
potential gradients, and assisting molecular motors strongly
influence its dynamics. Consequently, the translocation
process has been empirically studied in great variety in
biological literature [10,11]. Study of translocation as a
biophysical process is, however, more recent. Herein, the
polymer is simplified to a sequentially connected string of
N monomers as it passes through a narrow pore on a
membrane. The quantities of interest are the typical time
scale for the polymer to leave a confining cell (the ‘‘escape
of a polymer from a vesicle’’ time scale) [12], and the
typical time scale the polymer spends in the pore (the
‘‘dwell’’ time scale) [13] as a function of N and other
parameters like membrane thickness, membrane adsorp-
tion, electrochemical potential gradient, etc. [14].

These quantities have been measured directly in numer-
ous experiments [15]. A number of (mean-field–type)
theories have been proposed for the scaling of these typical
times [12–14] during the last decade as well. They describe
translocation as a first-passage or Kramer’s problem over
an entropic barrier in terms of the ‘‘reaction coordinate’’m
alone. Here m is the number of the monomer threaded into
the pore (m � 1; . . . ; N), and the transition rates from m to
m� 1 and vice versa are obtained from the derivatives of
the free energy with respect to m.

For unbiased polymer translocation (i.e., in the absence
of external driving fields), the prediction of the mean-field
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theories (which consider only polymers with simple ran-
dom walk statistics) is that the dwell time scales as N3 for
Rouse dynamics and as N2:5 for Zimm dynamics [13].
These theories indeed provide insight into the process of
translocation, but their usage of the (equilibrium) free
energy to determine the transition rates from m to m� 1
implicitly assumes that at a fixed reaction coordinate m the
polymers equilibrate much faster than the typical time for
the reaction coordinate to change its value by �1. This is
not necessarily the case for longer polymers or polymers in
higher spatial dimensions [16]. Verifying the scaling re-
sults of these theories using simulations, too, remains a
computationally significant challenge since it involves
simulating long polymers and correspondingly long time
scales.

In this Letter we (a) report the results of extensive
lattice-based Monte Carlo simulations of the unbiased
translocation process in three spatial dimensions, for a
variety of polymer lengths, pore diameters, and membrane
thickness, and (b) trace the physical origin of their differ-
ences from the existing mean-field theory results. Our
system consists of two cells A and B, each of volume V,
that are connected by a pore of diameter b in a membrane
of thickness L. The polymer is modeled as a lattice poly-
mer of N monomers, obeying self-avoiding walk statistics.
Its movement consists of single monomer jumps to neigh-
boring lattice sites. Jumps along the contour of the poly-
mer, i.e., reptation moves, are attempted with a higher
frequency than jumps that displace the contour of the poly-
mer laterally to cause Rouse dynamics. A detailed descrip-
tion of this lattice polymer model, its computationally effi-
cient implementation, and a study of some of its properties
and applications can be found in Refs. [17,18]. Hydro-
dynamical interactions are not incorporated in this model.

In our simulations, the polymer repeatedly moves back
and forth from one cell to the other through the pore [see
Fig. 1(a)]. Our primary interest lies in the scaling behavior
of two quantities: (i) the mean translocation time h�ti, the
time required for the whole polymer to escape from one
cell to the other, and (ii) the mean dwell time h�di, the time
that the polymer spends in the pore during the translocation
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FIG. 1. (a) Our system with polymers in different states. (i) State A, all monomers are in cell A; (ii) state T (threaded), some
monomers are in cell A and the rest are in cell B; (iii) state B, all monomers are in cell B. (b) A typical translocation process of the
polymer [using the definition of polymer states defined in (a)] for our system.
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process. To define these quantities precisely, we introduce
the following states of the polymer. In state A (B), the
entire polymer is located in cell A (B). States M and M0 are
defined as the states in which the middle monomer is
located halfway between both cells. Finally, states T and
T0 are the complementary to the previous states: the poly-
mer is threaded, but the middle monomer is not in the
middle of the pore. The finer distinction between states M
and T, respectively, M0 and T0, is that in the first case the
polymer is on its way from state A to B or vice versa, while
in the second case it originates in state A or B and returns to
the same state. The translocation process in our simulations
can then be characterized by the sequence of these states in
time (see Fig. 1). In this picture, the dwell time is the mean
time that the polymer spends in state M or T, while the
translocation time is the mean time starting at the first
instant the polymer reaches state A after leaving state B,
until it reaches state B again.

Having set both the Kuhn length of the polymer and the
lattice spacing to unity, we conjecture that for thin mem-
branes (L ’ 1) h�di � N1�2�F�b=Rg�, and verify it for b �
1 using polymer lengths up to N � 1200. For narrow pores
(b ’ 1), we argue and verify that logh�ti � L. We also
observe that h�ti � VN�b=Rg���1�2����2�1�=�F�b=Rg�.
Here � � 0:588 is the growth exponent for self-avoiding
walks, and � � 1:1601 and �1 � 0:68 are exponents re-
lated to the entropy of a polymer in bulk and near a rigid
wall, respectively, and F��� is a scaling function; it ap-
proaches a constant for �!1 and behaves ���0:38�0:08

as �! 0.
Argument for the scaling of h�di.—For thin membranes

(L ’ 1), a scaling relation between h�di, b, and N can be
obtained by the following hypothesis: h�di � N�F�b=N��
for some � and �. We expect that for h�di, b=Rg is a
relevant dimensionless parameter that determines how
easily the polymer can squeeze itself through the pore,
since the polymer can ‘‘feel’’ the presence of the pore
only if its radius of gyration Rg is comparable to the pore
diameter b. This implies that b=N� � b=Rg ) � � �, as
Rg � �N�. Moreover, from physical grounds, such a scal-
ing hypothesis means that the scaling function F��� should
approach a constant for �!1. Since for very large pores
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(i.e., b� Rg) the polymer no longer feels the pore, h�di
should be the time taken by the polymer to diffuse a
distance Rg ) h�di � R2

g=�2DN� � R2
gN � N1�2�, where

DN � N
�1 is the diffusion coefficient of the polymer in a

dilute polymer solution. The last relation, together with the
scaling hypothesis, implies that � � 1� 2�, and

h�di � N2��1F
�
b
Rg

�
: (1)

Additionally, since the monomers within the pore move
along the contour of the polymer, i.e., reptate, h�di should
be independent of L, as long as L	 N [19].

Relation between h�di and h�ui.—During the dwelling
process, the polymer necessarily has to pass state M at least
once. Because of the spatial symmetry between cells A and
B, each time sequence as depicted in Fig. 1 is equally
probable under exchange of states A and B. Additionally,
each time sequence from A to B is as likely as its time-
reversed counterpart.

To devise a computationally cheaper method to mea-
sure h�di using these symmetries, we introduce an addi-
tional time scale h�ui, the mean unthreading time, which is
the average time that either state A or B is reached from
state M (not excluding possible reoccurrences of state M).
Because of time symmetry, the mean time passed since the
polymer last left state A, until it reached state M, is as large
as the mean time passed since the polymer last left state B,
until it reached state M. Consequently,

h�di � 2h�ui: (2)

For b > 1, we expect a similar relation between h�di and
h�ui to hold. However, we do not have a suitable argument
for it, since for larger pores, the properties of the polymer
as a macromolecule start to play a role [20].

Relation between h�ti and h�di for b � 1.—The fraction
of time spent in states M and T compared to h�ti equals
h�di=h�ti. The probability that the polymer is threaded
exactly halfway is an equilibrium property; hence, the
sum of the probabilities pM and p0M that the polymer is
in state M or M0 can be obtained from the contribution
of these states to the total partition sum Ztot. The ratios
1-2
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FIG. 2. h�di obtained from h�ui for L � b � 1 and N up to
1200. Solid line: h�di � �0:55N�3 � 6:84N�2:4�1. When the
same data are plotted in the �b=Rg� � �h�di=N1�2�� coordinates,
the ��0:38�0:08 scaling for F��� is recovered for �! 0.
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fM 
 pM=pM0 and fT 
 pM=pT are nonequilibrium prop-
erties, but as we show below, it is possible to estimate these
ratios accurately from targeted simulations. With these
quantities, the average translocation time can be obtained
indirectly from the dwell time, using

h�ti � h�di
fT�1� fM�

�pM � pM0 �fM�1� fT�
: (3)

We verify Eqs. (1)–(3) and cross-check their consistency
using direct simulations to measure h�ti and targeted simu-
lations to measure h�ui, pM � pM0 , fM, and fT. We use the
lattice polymer model of Ref. [17].

First, we estimate the entropic penalty paid by the
polymer in state M or M0. The partition sum Zb�N� of a
self-avoiding polymer of length N, anchored at the origin
of an infinite lattice, is proportional to Zb�N� ��NN��1,
with � � 1:1601 and� is a lattice-dependent nonuniversal
constant. If this polymer is restricted to the half-space
z � 0, the same expression holds, but with an adjusted
exponent �1 � 0:68 [21]. The partition sum of a polymer
of length N in state M or M0, threaded through a narrow
pore (b � 1) in a thin membrane (L � 1), is then given by
the product of the partition functions of two separate self-
avoiding polymers of length N=2, each having one of their
ends anchored at a rigid wall, as Zt�L � 1; N=2; N=2� �
��N=2�N=2��1�12 � Zb�N�N

���2�1�1. Adding a linear
scaling with V to Zb�N�, this ratio is also the equilibrium
probability that the polymer is in state M or M0. Hence, we
obtain

pM � pM0 �N� � N
���2�1�1=V: (4)

With increasing membrane thickness L, since the lattice
coordination number in the pore is much smaller than in
the bulk, we have logZt�L;N� � L, at least as long as L	
N (neglecting logarithmic terms). Stated differently, the
entropic barrier encountered by the translocating polymer
increases linearly with L. This results in an exponential
increase for h�ti [see Fig. 3]:

logh�ti � L: (5)

Next, we perform dynamical simulations to determine
fM, fT, and h�ui. The simulations start with a polymer of
length N, threaded halfway in the pore, and the polymer
originates from cell A. We then wait until the polymer
unthreads. If it unthreads into cell A, the starting configu-
ration is labeled M0, while if it unthreads into cell B, it is
labeled M. We record the ratio of the number of polymers
unthreading into cell A vs cell B for polymer lengths N �
20, 40, 50, and 80, and obtained 1.37, 1.28, 1.33, and 1.27,
respectively, for this ratio; i.e., cell A is preferred above
cell B by a small factor, which does not increase with N.
This asymmetry can be easily explained by the fact that
during the translocation process from state A to state B, the
polymer accumulates folded segments on the B side and
stretched segments on the A side, which makes it more
prone to go back to state A than to proceed to state B. Thus,
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with c ’ 1:3�1, we conclude that

fM�N� � c: (6)

In the same simulations, we measured fT=�1� fT�, i.e.,
the fraction of time that the polymer is in state M before
unthreading. From the theoretical ratio of

PN�1
i�1 Zt�L �

1; i; N � i� and Zt�L � 1; N=2; N=2�, we found (and nu-
merically observed as well) that

fT�N� � N�1: (7)

For each N, we combined the unthreading times into a
histogram. We then obtained h�ui�N� from a fit of the long-
times tail of this histogram (see Fig. 2). We found that for
short polymers h�ui�N� � N3, while for long polymers
h�ui�N� � N2:4�0:05. The explanation of this is as follows:
a polymer translocating from A to B pulls on its segments
in A as it accumulates folded segments in B. The resulting
strains can be released by reptation moves (along the
contour) that initiate only at the ends, or by Rouse moves
(perpendicular to the contour) that take place anywhere on
the polymer. For the first mechanism, the scaling of h�ui
with N is that of reptation [i.e., h�ui�N� � N3, which is the
same as the mean-field theory result], but since there are of
O�N� more segments on the polymer (where Rouse moves
can occur) than the two ends (where reptation moves
initiate), the second one dominates for long polymers,
giving rise to the crossover seen in Fig. 2. The precise
location of this crossover depends on the details of the
experiment or simulation.

Having combined Eqs. (2)–(4), (6), and (7), we obtain,
for b � 1, h�ti scaling as a function of polymer length as

h�ti � VN
2�2����2�1�0:22�0:05: (8)

For b > 1 and L � 1, a scaling relation for h�ti can be
1-3
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FIG. 3. h�ti vs b=Rg for N � 20; 40; 80; b � 1; . . . ; 31. Inset:
lnh�ti � L for b � 1 (circles, N � 20; diamonds, N � 40).
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obtained if we assume that h�ti is related to h�di in the same
way as in Eq. (3). In this case we expect the entropic
penalty paid by the polymer in state M or M0 to behave
as a function of b=Rg—as explained above Eq. (1), this is
the quantity that determines to what extent the polymer
feels the presence of the pore; i.e., we expect N���2�1�1 in
Eq. (4) to be replaced by �N�=b�����2�1�1�=�. Simul-
taneously, V in Eq. (4) is to be replaced by V=b2, as the
chance for the polymer to find the pore increases linearly
with the pore area. However, we expect Eqs. (6) and (7) to
remain unchanged as they concern only a threaded poly-
mer. Together with Eq. (1), for b > 1 and L � 1, this
argument leads one to

h�ti � VN�b=Rg���1�2����2�1�=�F�b=Rg�: (9)

We performed direct simulations to verify Eq. (9) [see
Fig. 3]. We started with a polymer in cell A, as shown in
Fig. 1, and recorded the times (for up to 500 different runs)
it took to reach state B. We then made a histogram of these
times and deduced h�ti from its asymptotic slope.

In summary, we studied unbiased polymer translocation
for various pore diameters b and membrane thicknesses L,
using a lattice polymer model. We found that for L � 1,
both the mean translocation time h�ti and the mean dwell
time h�di obey scaling relations that involve functions of
b=Rg, where Rg is the radius of gyration of the polymer.
We also showed that for b � 1, lnh�ti � L and h�di is
independent of L. We explained these results using simple
arguments based on the polymer’s dynamical and equilib-
rium properties. Our analysis explains, for the first time,
how and why deviations from the mean-field theory results
occur for long polymers.

The persistence length of a polymer in translocation
experiments is equivalent to the Kuhn length used here.
In experiments electric field effects due to the applied bias
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voltage and hydrodynamical effects [22] are always
present; we did not consider these here. Nevertheless, as
our scaling results are based on very general grounds, we
expect the same scaling forms (involving b=Rg for L � 1,
or lnh�ti � L for b � 1) to hold when the hydrodynamical
effects are taken into account, albeit with different expo-
nents. The effects of hydrodynamics and external fields on
translocation are two major topics of our ongoing work.

We thank Professors Henk van Beijeren and Erich
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