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Theory of the Helical Spin Crystal: A Candidate for the Partially Ordered State of MnSi
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MnSi is an itinerant magnet which at low temperatures develops a helical spin-density wave. Under
pressure it undergoes a transition into an unusual partially ordered state whose nature is debated. Here we
propose that the helical spin crystal (the magnetic analog of a solid) is a useful starting point to understand
partial order in MnSi. We consider different helical spin crystals and determine conditions under which
they may be energetically favored. The most promising candidate has bcc structure and is reminiscent of
the blue phase of liquid crystals in that it has line nodes of magnetization protected by symmetry. We
introduce a Landau theory to study the properties of these states, in particular, the effect of crystal
anisotropy, magnetic field, and disorder. These results compare favorably with existing data on MnSi from
neutron scattering and magnetic field studies. Future experiments to test this scenario are also proposed.
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MnSi is a well-studied itinerant ferromagnet [1] but has
recently been at the focus of renewed attention since the
discovery of unusual properties in high-pressure studies
[2–5]. The ambient-pressure magnetic phase of MnSi is
characterized by a hierarchy of three major energy scales
[6]. First are interactions that favor itinerant ferromagne-
tism. At a much lower energy scale, Dzyaloshinskii-
Moriya (DM) spin-orbit coupling (which is allowed in
the noncentrosymmetric B20 crystal structure of MnSi)
leads to a spiraling of the magnetic moment with a single
helicity (helical spin-density wave). The small ratio be-
tween these scales is responsible for the long spiral pitch
(� � 180 �A vs the lattice constant a � 4:6 �A). The DM
interaction defines chirality and the length of the ordering
wave-vector (Q � 2�=�), but not its direction. The latter
is pinned to h111i by even weaker crystal-anisotropy terms
[h111i: class of crystal directions related by cubic symme-
try]. Elastic neutron scattering at atmospheric pressure
reveals Bragg spots at these eight points in the Brillouin
zone which are attributed to domains each containing a
single-spiral state. On application of pressure however, a
first-order phase transition occurs at pc � 14:6 kbar. At
higher pressures, unusual properties are observed. First, the
neutron scattering signal is completely changed from the
low pressure phase. Enhanced scattering is seen at wave
vectors with a length similar to the low pressure phase, but
with intensities no longer sharply peaked along h111i.
Rather, the intensity is more diffuse over the wave-vector
sphere, hence the name ‘‘partial order,’’ but clearly peaking
at h110i [3]. Second, the resistivity displays a non-Fermi
liquid (NFL) temperature dependence [4]. Although they
both onset at pc, the NFL persists to pressures far beyond
where partial order is seen. The relation between these two
puzzles is therefore unclear—here we focus only on offer-
ing a theory for the partially ordered state. Recent theo-
retical work on collective modes and electronic properties
of helimagnets are in Ref. [7]. Other theoretical proposals
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for the high-pressure state of MnSi have invoked proximity
to a quantum multicritical point [8], magnetic liquid-gas
transitions [9], and skyrmionlike structures [10,11].

None of these theories has attempted to explain the new
peak positions. As a first attempt, one might speculate that
the crystal anisotropy which pins the spiral along h111i at
low pressure is modified at high pressure and pins it along a
different set of directions, h110i. However, this view is
untenable on many counts, e.g., it is at odds with the
magnetic field studies [2]. Moreover, the usual crystal-
anisotropy terms consistent with the lattice symmetry
give energy minima either at h111i or h100i, but h110i
are always saddle points (which can be proved more gen-
erally [12]). Similarly, while it is tempting to interpret the
partially ordered phase of MnSi entirely in terms of a
directionally fluctuating spin spirals, this requires both a
novel theoretical framework for its description, as well as
an explanation for the unusual anisotropy.

In this work, we study ordered magnetic states which are
linear superpositions of spin spirals with different wave-
vectors. We show that in addition to the three energy scales
(ferromagnetic, DM, and crystal anisotropy) that are usu-
ally considered in MnSi, there is an additional scale that is
important; the interaction between different modes (ex-
pected to be intermediate between the DM and crystal
anisotropy), which determines the spin-crystal state that
is selected. We propose that the transition under pressure
between the single-spiral and partially ordered states is
driven by a change in the intermode interactions that
goes from preferring a single-spiral ground state to a multi-
spiral ground state.

Magnetic weak crystallization theory.—The Landau free
energy to second order in the local spin density M�r� of a
system with full rotation symmetry (transforming both
space and spin together)—but no inversion symmetry is

F2 � hr0M2 � J�rM�2 � 2DM � �r�M�i; (1)
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FIG. 1. Mean-field phase diagram of the six-mode model for
r�Q�< 0 as a function of the interaction parameters for U20 � 0
and U0 > 0. In the gray region, F4 < 0 and higher-order terms
should be added for stability.
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where h. . .imeans averaging over the sample and r0, J, and
D are parameters (J > 0). Coupling to fermions which
leads to damped dynamics is ignored in the following since
we will focus on ground states with long range order. The
last term of Eq. (1) is the DM interaction. Clearly, the
energy is minimal for circularly polarized waves of fixed
helicity which satisfy Dm�q � �iq�mq� � �jDjqjmqj

2,
where mq are the Fourier modes of M�r�. Equation (1),
then becomes F2 �

P
qr�q�jmqj

2, where r�q� � r0�

D2=J� J�q� jDj=J�2. Here, in analogy to standard
liquids (and in contrast to the uniform ferromagnetic
case), r�q� is minimized at a finite wave vector Q �
jDj=J and for r�Q� ! 0, all modes on the surface jqj �
Q in reciprocal space become soft (as opposed to a single
point q � 0). To study the implications of such a singular
surface on the phase transition itself is beyond the scope of
this Letter. But we recognize that when r�Q� ! 0, the
Gaussian theory not only becomes unstable towards for-
mation of a helical spin-density wave along any direction,
but that linear combinations of such states (helical spin
crystals) are equally natural candidates.

In the spirit of weak crystallization theory [13], we now
study minima of the free energy in the ordered phase,
where r�Q�< 0. The degeneracy between a simple spin
spiral and linear combinations of several spin spirals (spin
crystals) is lifted by interactions, i.e., by the fourth-order
term (F4) in M (odd terms in M are forbidden by time-
reversal symmetry). We assume that F4, as F2, has full
rotation symmetry and we will include the weak crystal
anisotropy last. Hence, with q4 � ��q1 � q2 � q3�:

F4 �
X

q1;q2;q3

U�q1;q2;q3��mq1
�mq2

��mq3
�mq4

�: (2)

If the interaction is strictly local in real space [F4 / hM4i,
which is equivalent to a constant coupling U�q1;q2;q3� �
U0], it is easy to show that the single-mode spin spiral is the
absolute minimum of F2 � F4. In the spin spiral state, M2

is constant and it is therefore possible to minimize both F2

and F4 independently.
However, U�q1;q2;q3� is generally not constant.

Assuming F4 is small, in that its main effect is to provide
an interaction between the modes which are degenerate
under F2, the important terms of F4 are those with jq1j �
jq2j � jq3j � jq4j � Q. Then the coupling function U
depends only on two independent angles 2� � arccos�q̂1 �
q̂2� and �=2 � arccos	�q̂2 � q̂1� � q̂3=�1� q̂1 � q̂2�
 [14].
This mapping allows � and � to be interpreted as the polar
and azimuthal angles of a sphere and the coupling U��;��
is a smooth function on that sphere satisfying: U��;�� �
U��� �;�� � U��; 2����. It is natural to expand U in
spherical harmonics (Ylm) which satisfy this relation and
we just retain terms with l � 2. Thus, U��;�� � U0 �
U11 sin� cos��U20�3cos2�� 1� �U22sin2� cos2�.

To find the absolute minimum of F2 � F4 for a general
angle-dependent interaction would be a formidable task.
20720
Instead, we first limit ourselves to linear combinations of
six spin spirals, corresponding to wave vectors �kj

(for j � 1; . . . ; 6), where k1 � Q=
���
2
p
�1;�1; 0�, k2 �

Q=
���
2
p
��1;�1; 0�, etc., (see inset of Fig. 1). We may write

the six modes as mkj
� m��kj

�  jnk̂j
, where nq̂ � 	q̂�

�ẑ� q̂� � iẑ� q̂
=	1� �ẑ � q̂�2
1=2. The choice of the unit
vector ẑ is arbitrary. A different choice leads to a set of
phase changes in the six complex variables  j. The inter-
action Eq. (2), written in terms of the  variables, contains
terms of the form Vjj0 j jj

2j j0 j
2 (three parameters) and one

term �Re�Tx � Ty � Tz�, where Tx �  �1 2 5 6, Ty �
 �1 

�
2 3 4, and Tz � � 3 

�
4 
�
5 6, which is sensitive to

relative phases. These are the only quartic terms invariant
under the microscopic symmetries of the problem: trans-
lations, time reversal, and tetrahedral point group opera-
tions. The parameters Vjj0 and � can be easily expressed as
a linear combination of U0; U11; U20, and U22. The result-
ing mean-field phase diagram is shown in Fig. 1. Different
ordered phases are separated by first-order phase bounda-
ries. In the ‘‘spiral’’ state, only one out of six amplitude is
nonzero. The square lattice state ‘‘�’’ is an superposition
of two orthogonal spin spirals with equal amplitude. In the
region ‘‘4,’’ there are actually two degenerate states, one
with j ij> 0 (i � 1; 3; 5) and one with (i � 2; 4; 6) (re-
maining amplitudes being zero in each case). Finally in
bcc1 (� > 0) and bcc2 (� < 0), all six modes contribute
with equal amplitudes. These states have the periodicity of
a bcc crystal and will be the focus of this Letter. Note that a
small correction of the purely local interaction U0, given
by U11 
 U22 
 0:2U0 is sufficient to induce a transition
from the spiral state to the bcc1 spin crystal [15].

Properties of the bcc spin crystal.—From the sole as-
sumption (suggested by experiments) that a spin texture
has equal-weighted Bragg peaks at the set of wave vectors
2-2
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�kj, weak crystallization theory restricts an infinite vari-
ety of physically very different magnetization patterns
M�r� down to only two possibilities: bcc1 and bcc2. In
bcc1 (bcc2), the relative phases of  1; . . . ;  6 are locked in
such a way that Tx; Ty, and Tz are all negative (positive),
i.e., for bcc1:  ̂1 � � ̂4 ̂5,  ̂2 � � ̂4 ̂

�
6,  ̂3 �  ̂4 ̂5 ̂

�
6,

where  ̂j �  j=j jj and for bcc2:  ̂1 � �i ̂4 ̂5,  ̂2 �

�i ̂4 ̂
�
6,  ̂3 � � ̂4 ̂5 ̂

�
6. Three phases (e.g.,  ̂4,  ̂5,  ̂6)

are arbitrary due to global translation symmetry. In addi-
tion to the translational degeneracy, both bcc states are
twofold degenerate due to time-reversal symmetry break-
ing. In contrast to the single-spiral, time reversal 	M�r� !
�M�r�
 is not equivalent to a translation in either of the
bcc states. In fact, both bcc states feature a macroscopic
time-reversal symmetry breaking order parameter S �
hMxMyMzi � 0.

bcc1 can be defined by its symmetry properties as being
the unique structure that is invariant under time reversal
(sign change of M) followed by a �=2 rotation about the x,
y, or z axis. For bcc2, the same operations result in trans-
lations. The real space bcc1 structure is illustrated in Fig. 2.
There are two sets of straight lines, along which M is
constrained by the symmetry properties of bcc1. First,
the magnetization vanishes along the x, y, and z axes
[and their translations by ( 1

2 ;
1
2 ;

1
2 )], due to the invariance

mentioned above. These are reminiscent of the blue phases
of chiral nematic liquid crystals [16], where line defects
also exist but are protected by topology, rather than by
symmetry. Second, in the center between four parallel node
lines, the magnetization direction is constrained as shown
0.5 1 1.5

0M / M
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FIG. 2 (color online). (a) Magnetization pattern M�r� of bcc1.
The black lines are nodes, where M � 0. Along red lines, the
magnetization direction is as indicated. The blue dashed line
indicates the location of the cut shown in (b) where vectors
denote the in-plane magnetization. The nodes lines are the
centers of antivortices and the directed red lines are the centers
of meron configurations. (c) Probability distributions h��M�
jM�r�j�i of three different magnetic states: a single-spiral state of
amplitude M0 and both bcc states with j jj2 � M2

0=6. Landau
theory predicts this 1=6 ratio of amplitudes at the phase bound-
ary between these states. A finite-width � function was used for
the numerical evaluation.
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in Fig. 2(a). Since these properties are determined by
symmetry, they are stable, even if higher Fourier modes
are included. In contrast, bcc2 has no node lines, but six
point nodes in each primitive unit cell. Figure 2(c) shows
the distribution of the local magnetization jMj over the
sample.

Anisotropy and locking of crystal directions.—So far,
our model free energy [Eqs. (1) and (2)] has been com-
pletely rotation invariant. By choosing those six modes
which lead to a bcc crystal, we assume that full rotation
symmetry is spontaneously broken, but a global rotation
still leaves the energy invariant. This degeneracy is broken
by small anisotropic terms. For the MnSi B20 crystal
structure, the leading anisotropic term in powers of M
and q is of the form: Fa � a

P
jg�k̂j�j jj2, where g�k̂� �

k̂4
x � k̂

4
y � k̂

4
z . The function g has its maxima and minima

along h100i and h111i, respectively, while h110i is a saddle
point. It is therefore impossible that this term locks a single
spiral to h110i. From the observed spiral orientation along
h111i at low pressures, we obtain a > 0. Assuming there is
no sign change with pressure, we find that this locks the
magnetic bcc crystal (bcc1 or bcc2) to the atomic B20
crystal in such a way that all k̂j point along h110i. Hence
it naturally explains the neutron scattering peaks at the
locations seen in Ref. [3].

Magnetic field.—A uniform magnetic field couples lin-
early to the q � 0 mode of the magnetization, m � hMi.
Equation (2) couples this additional mode to the spin-
crystal modes and produces terms of the form m2j jj2,
�m � k̂j�

2j jj2, and one term �h �m, where h is cubic
in the  variables [12]. The behavior of a single spin spiral
in a magnetic field is characterized by a strongly aniso-
tropic susceptibility, which effectively orients the spiral
axis along the field [17]. Once the spiral is oriented, the
susceptibility is comparatively large. In the bcc spin-
crystal states, there is no such anisotropy in the linear
response, because symmetry does not allow for an aniso-
tropic susceptibility tensor. Since the bcc spirals, unlike the
single spiral, cannot be optimally oriented along the field,
one expects the following sequence of phases as a function
of increasing magnetic fields: “bcc” ! “spiral” !
“spin polarized”, in good comparison with experiment
[2]. This expectation is true within our theory if � is not
too large. In fact, the term�h �m induces a change of the
relative amplitudes and phases of the six interfering spirals
as a function of the magnetic field and therefore adds to the
ability of the bcc state to adjust to an external field. For
example, a magnetic field in the z direction suppresses j 1j
and enhances j 2j relative to the other four amplitudes [or
the opposite, depending on the signs of � and the time-
reversal index S � hMxMyMzi]. This effect should be ob-
servable by neutron scattering in a single-domain sample,
which may be obtained via proper field cooling. In prac-
tice, this needs some care since the energy splitting be-
tween the two time-reversed states is only cubic in the
field: / HxHyHz.
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Magnetotransport.—The broken time-reversal symme-
try in the bcc spin crystals, but with the absence of a
uniform magnetization, can give rise to unusual magneto-
transport in single-domain samples. The symmetric part of
the conductivity tensor is allowed a linear field dependence
due to time-reversal symmetry breaking (S � 0):

�ab � �0�ab � �Sj	abcjHc �O�H2�: (3)

For example, for a field applied along ẑ, the conductivity
along �x̂� ŷ�=

���
2
p

would display linear magnetoresistance.
Similarly, the Hall conductivity (the antisymmetric part of
�) is allowed an unusual quadratic contribution:

�Hab � �H0 	abcHc � �0S	abcj	cdejHdHe �O�H3�: (4)

Thus, the Hall effect will in general not simply switch sign
if the direction of the magnetic field is inverted.

Effect of disorder.—Although the available MnSi crys-
tals are very clean from the electrical resistivity point of
view, helical magnetic structures are sensitive to disorder at
a much longer length scale. Hence disorder effects need to
be studied. Nonmagnetic disorder which couples to the
magnetization squared, Fdis �

R
drVdis�r�jM�r�j2, will

not affect single-spiral states which have a constant mag-
nitude of magnetization, but they do affect spin-crystal
states which have a modulated magnitude [see Fig. 2(c)].
Therefore the neutron scattering signal of the spin-crystal
state is expected to have more diffuse scattering than the
single spiral, consistent with the experimental observation
that the high-pressure phase has diffuse scattering peaked
about h110i, while the low-pressure phase has sharper
spots. Anisotropic spreading of the Bragg spots parallel
and perpendicular to the wave vector sphere is also antici-
pated [12]. Disorder in D � 3 is expected to destroy true
long range order of the spin crystal, leading to either a
Bragg glass or a disordered state. In either case, time-
reversal symmetry breaking of bcc1 remains, implying
that there must be a finite temperature phase transition on
cooling into this phase.

NMR and �SR.—The spatially modulated magnetiza-
tion magnitude of spin-crystal states [Fig. 2(c)] should be
visible in muon spin rotation (�SR) and zero field NMR
experiments. While �SR on MnSi has been performed
only at low pressures [18], zero field NMR was carried
out over a wide range of pressure [5]. The resonant fre-
quency was found to be sharp in the low pressure phase but
to broaden at higher pressure. Both the presence of static
magnetism and the broader distribution of frequencies
(jMj distribution) is consistent with our proposal of bcc1
for the high-pressure phase.

Conclusions.—A time-reversal symmetry breaking hel-
ical spin crystal bcc1, disordered by weak impurities, is
proposed for the high-pressure partially ordered state of
MnSi. Both theoretical arguments from simple models
where this state naturally arises adjacent to the single-
spiral state, as well as favorable comparison with a variety
of experiments: e.g., neutron scattering and magnetic field
20720
studies lend support to this view. Future experiments that
could probe the unusual properties of this phase, e.g.,
magnetoconductivity and �SR are also proposed. Im-
portant puzzles that remain are the origin of NFL behavior
and the lack of clear signatures for a finite temperature
transition into the partially ordered state.
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