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Quantum Criticality and Percolation in Dimer-Diluted Two-Dimensional Antiferromagnets
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The S � 1=2 Heisenberg model is considered on bilayer and single-layer square lattices with couplings
J1, J2, with each spin belonging to one J2-coupled dimer. A transition from a Néel to disordered ground
state occurs at a critical value of g � J2=J1. The systems are here studied at their dimer-dilution
percolation points p�. The multicritical point �g�; p�� previously found for the bilayer is not reproduced
for the single layer. Instead, there is a line of critical points (g < g�, p�) with continuously varying
exponents. The uniform magnetic susceptibility diverges as T�� with � 2 �1=2; 1�. This unusual behavior
is attributed to an effective free-moment density �T1��. The susceptibility of the bilayer is not divergent
but exhibits remarkably robust quantum-critical scaling.
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FIG. 1 (color online). The lattices studied (left) and their T �
0 phase diagrams (right). The couplings are J1Si 	 Sj and J2Si 	
Sj, with J1; J2 > 0 (in the bilayer all interlayer couplings are J2

and in the single layer the vertical bonds alternate J1, J2). Dimer
dilution corresponds to removing J2-coupled pairs—such re-
moved dimers are indicated by open circles. For the bilayer, the
percolating cluster is ordered on the line (0 
 g < g�, p�),
whereas the single-layer is quantum critical for (0< g< g�, p�).
A challenging and important aspect of quantum-phase
transitions [1] is the influence of disorder (randomness) on
the critical behavior, in the ground state as well as in the
finite-temperature quantum-critical scaling regime [2,3].
For one-dimensional quantum spin systems a real-space
renormalization group (RG) scheme [4] has rigorously
established [5] a strong-disorder random singlet fixed point
which controls the low-energy behavior for any strength of
the disorder. This is an unusual type of quantum criticality
with dynamic exponent z � 1, which leads to, e.g., a
susceptibility diverging as T�1ln�2�T�. The RG procedure
has also been carried out numerically for various two-
dimensional (2D) models, although in this case there is
no rigorous proof of its validity. In the random transverse
Ising model a random singlet phase was found [6], but only
conventional critical points (finite z) were found for SU(2)
symmetric (Heisenberg antiferromagnet) systems [7].
However, the disorder leads to unusual properties in the
ordered and disordered phases [7,8], e.g., quantum
Griffiths effects.

In the 2D S � 1=2 Heisenberg model an order-disorder
transition occurs at a critical strength of a coupling pattern
favoring singlet formation on dimers, plaquettes, etc. [2,3].
There is ample evidence from quantum Monte Carlo
(QMC) studies [9–11] that this transition is in the 3D
O�3� universality class, as predicted theoretically [2,12].
According to the Harris criterion [13], disorder should be
relevant at this transition. The applicability of efficient
quantum Monte Carlo methods [14], in combination with
a well developed RG scheme, makes dimerized Heisenberg
models very well suited for exploring disorder effects on
quantum-phase transitions. Recent studies have demon-
strated a variety of scaling behaviors [7,15–19]. The case
of dilution disorder is particularly interesting, as it includes
the special case of quantum criticality at the classical
percolation point, where geometrical and spin fluctuations
are simultaneously divergent [15,16]. Here two cases of
such multicriticality are studied using QMC simulations—
a bilayer and a dimerized single-layer model with random
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dilution of dimers. The systems are illustrated in Fig. 1
along with schematic phase diagrams. The dramatically
different behaviors at the percolation threshold is the main
focus of this Letter. The bilayer has a single point of
quantum criticality where the susceptibility scales to zero
as T ! 0 [15,16]. In contrast, the single layer exhibits a
line of quantum-critical points where the susceptibility is
divergent.

The 2D Heisenberg model with random site dilution has
been studied extensively because of its relevance to Zn
doped cuprate antiferromagnets [20,21]. It was for a long
time believed that site or bond dilution leads to a quantum-
phase transition before the geometric percolation point is
reached [22–24]. However, recent QMC studies have
shown that the transition coincides with the percolation
point [25,26] and that the percolating cluster is ordered
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FIG. 2 (color online). Temperature scaling of the susceptibility
of the infinite percolating bilayer cluster for different coupling
ratios g, using a dynamic exponent z � 1:36.

PRL 96, 207201 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
26 MAY 2006
[26]. The critical exponents pertaining to equal-time cor-
relations (�, �, and �) are therefore those of classical
percolation. Other exponents (�;�; �) are given by combi-
nations of percolation exponents and the dynamic expo-
nent of the spin clusters [27].

The long-range order of the Heisenberg antiferromagnet
on percolating clusters, which have fractal dimensionality
d � 91=48 [28], implies that other couplings have to be
introduced in order to realize a dilution-driven quantum-
phase transition [26]. This has been explored recently with
the dimer-diluted bilayer model [15,16]. In the pure
Heisenberg bilayer, with intralayer and interlayer cou-
plings J1 and J2, there is an order-disorder transition at g �
J2=J1 � 2:52 [11] (due to the tendency to singlet forma-
tion across the planes). If this system is diluted by ran-
domly removing single spins, order is induced in the
disordered phase because moments localize in the neigh-
borhood of the vacancies. These moments interact and
order at T � 0 [29]. By instead diluting the two layers
symmetrically, i.e., removing dimers consisting of nearest-
neighbor spins on opposite planes, no localized moments
form and a phase transition takes place at a coupling g
which depends on the dilution fraction p, as shown in
Fig. 1. At the geometrical percolation point, which clearly
is the same as for a single site-diluted layer, p� � 0:41
(hole concentration) [28], there is a multicritical point
(g�; p�) at which the long-range order on the percolating
cluster vanishes and the spins are quantum critical. A
critical coupling g� � 0:15 and dynamic exponent z� �
1:3 were found in two independent QMC calculations
[15,16]. The generic transition for p < p� has also been
studied in detail by Monte Carlo simulations of an analo-
gous 3D classical Heisenberg model with columnar defects
[17]. Here an exponent z � 1:3 was found (but z� � z is
expected because of the different cluster dimensionality).
Long-range order in the presence of quantum fluctuations
on the line (g < g�, p�), which was believed not to be
possible for a continuous order parameter [30], was re-
cently related to the fracton dimensionality of the percolat-
ing cluster [31].

The question now arises as to the generality of the
behavior found in the bilayer model. On its percolating
cluster each spin has a neighbor in the opposite layer with
which it correlates at low temperature. Magnetization fluc-
tuations are thus quenched as T ! 0. Here the dimerized
single-layer model is used to investigate the role of the
bilayer symmetry upon dilution. Without disorder, the
system has a quantum-phase transition, in the same uni-
versality class as the bilayer, at J2=J1 � 2:5. With dimer
dilution again corresponding to random removal of J2

dimers, the percolation point p� � 1=2 because the dimers
are connected as a triangular lattice [28]. The T � 0 phase
diagram, outlined in Fig. 1, is similar to that of the bilayer
in that there is a finite segment of the phase boundary at
p � p�, terminating at a point (g�, p�) beyond which the
transition occurs for p < p�. However, as will be discussed
in detail below, there is a striking difference: Whereas the
20720
percolating cluster of the bilayer has Néel order for 0 

g < g� [15,16], the percolating cluster of the single dimer-
ized layer is quantum critical on the whole line (0< g 

g�, p�), with g� � 1:25. On this line, the magnetization
fluctuations are not completely quenched as T ! 0, lead-
ing to a divergent susceptibility, �� T��, with �! 1=2
for g! g�� and �! 1 for g! 0. For g � 0, a Curie
susceptibility is expected on account of the percolating
cluster breaking up into smaller pieces when all the J2

couplings vanish (the percolation point here is p�0 � 0:29).
Some of these clusters contain an odd number of spins. For
g > 0, the divergent susceptibility can then be attributed to
effectively isolated subclusters with net moments, which
are gradually ‘‘frozen out’’ as the temperature is reduced.
The form �� T�� corresponds to a free-moment density
scaling as T1��. This remarkable behavior will here be
demonstrated on the basis of large scale QMC (stochastic
series expansion [14]) calculations. Only results exactly at
the percolation threshold, p � p�, will be discussed. The
numerical techniques and special methods developed for
studies of random systems at ultra-low temperature are
discussed in detail in Ref. [26].

The temperature dependence of the uniform susceptibil-
ity ��T� of the bilayer close to the multicritical point was
discussed before in Ref. [15] (averages over all clusters
were presented in Ref. [16]). Figure 2 shows a more
extensive set of high-precision results for the largest cluster
on L� L lattices with L � 256 (L! 1 converged for the
temperatures shown) at p� � 0:407 253 8 [32]. Averages
over several thousand dilution realizations were taken. The
temperature is scaled according to the expected quantum-
critical form, � � a bTd=z�1 [3], where a and b are
constants and a � 0 at a quantum-critical point. Using
the fractal dimension d � 91=48 and adjusting z to obtain
a linear � versus Td=z�1, the same dynamic exponent, z �
1:36� 0:01, is found for all 0< g & g�. An improved
estimate g� � 0:118� 0:006 is also obtained. Note that
1-2



PRL 96, 207201 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
26 MAY 2006
bilayer criticality can be expected only for T < g, which is
indeed the case in Fig. 2.

In a clean quantum-critical system, there is a low-
temperature crossover of ��T� to a ‘‘renormalized classi-
cal’’ behavior when g < gc, at a temperature of the order of
the spin stiffness �s [3]. No such crossover is seen in Fig. 2,
however. Although it cannot be completely excluded that
there is a crossover at still lower temperature, one can also
argue that there should be no crossover, because �s � 0 on
the percolating cluster [15,26] (although there is long-
range order—this unusual behavior has also been dis-
cussed in Ref. [33]) and there is no apparent energy scale,
except T, to govern the long-distance physics of the spins
on this fractal network. Thus the multicritical point (p�, g�)
may control the T < g temperature dependence for all 0 

g 
 g� at p�. Considering that the scaling in Fig. 2 extends
down as low as to T � J=256 and to couplings g � g�=3,
the results appear to support such an unusual manifestation
of quantum criticality on a fractal percolating cluster.

Turning now to the single-layer model at its dimer
percolation point, p� � 1=2 for g > 0, the disorder-
averaged uniform susceptibility of the largest cluster was
calculated for L up to 256, down to T � J=512 (L! 1
converged). Here a special point (g�, p�) is found which
separates qualitatively different behaviors of the uniform
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FIG. 3 (color online). Temperature dependence of the suscep-
tibility of the percolating single-layer cluster. (a) At and close to
the coupling g� � 1:247. (b) T�1=2 scaling for 1< g & g�.
(c) Scaling with varying exponent for g < 1.
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susceptibility. As seen in Fig. 3(a), at g� � 1:247� 0:001,
� is linear in T and approaches a finite value as T ! 0. For
g > g� the susceptibility drops to zero and for g < g� it
diverges. As shown in Figs. 1(b) and 1(c), the divergence is
of the form �� T��, with � very close to 1=2 for 1 &

g < g� and �! 1 for g! 0. Such a divergence can be
interpreted as a temperature dependent fraction �T1�� of
effectively free magnetic moments.

As already noted, exactly at g � 0 the percolating clus-
ter is broken up into smaller subclusters and then a Curie
behavior, �� T�1, is expected on account of clusters with
a net spin. For small but nonzero g, one might then have
expected a crossover from Curie behavior when T > g to a
finite susceptibility as T ! 0. Instead, it appears that cou-
pling the subclusters leads to a g dependent power-law
temperature scaling of the number of effectively free mo-
ments. The effective couplings of these moments to each
other must thus have a g dependent power-law distribution,
leading to a self-similar structure of free moments different
from that of the underlying fractal cluster. It is remarkable
that this behavior persists also when g � 1, where the
picture of weakly connected subclusters is not obviously
relevant.

The bilayer percolating cluster is ordered at T � 0 for
g < g� [15,16]. This is not the case for the single dimerized
layer at p�. Instead, quantum-critical fluctuations are ob-
served for 0< g 
 g�. Consider the staggered structure
factor S�	;	� and susceptibility ��	;	� of a cluster of Nc
spins,
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1
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where Pij � ��1�xiyi�xj�yj . At a quantum-critical point,
these quantities, averaged over disorder, should scale with
the system size as hS�	;	�=Nci � L�s , h��	;	�=Nci �
L�� , with �s � ��z �� and �� � �� (normalizing by
Nc � Ld before disorder-averaging leads to some reduc-
tion of statistical fluctuations). Figure 4 shows results for
g � 1. The observed scaling gives z � 3:0 and � � �1:7.
The dynamic exponent can be compared with the expected
quantum-critical susceptibility; �� T�� with � �
1� d=z [3]. With the exponent � � 1=2 obtained from
��T� in Fig. 3(b), it is apparent that this relationship does
not hold here [z extracted from S�	;	� and ��	;	� should
be the actual dynamic exponent]. At the special point g�

the extracted � � 0 and z � d (not shown here) are in fact
consistent with this relationship. This is also the case at the
bilayer multicritical point [15]. The single-layer quantum
criticality on the line (0< g< g�, p�) thus appears to be
fundamentally different. It should be noted that the behav-
ior is not consistent with a Griffiths phase [7], as the spin
correlations in that case should be exponentially decaying,
in contrast to the power law seen in Fig. 4.
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FIG. 4 (color online). Finite-size scaling of the staggered
structure factor and susceptibility, normalized by the cluster
size, at intradimer coupling g � 1. The lines show scaling
with exponents indicated in the legends. The results where
obtained at T sufficiently low to give the ground state.
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An extended line of quantum-critical points was not
anticipated on the basis of a real-space RG approach
developed recently for quantum rotors on a percolating
cluster [31]. The critical line discovered here for the
single-layer model is more similar to the 1D random
singlet phase [5], in that there is a temperature dependent
fraction of effectively free moments. In the random singlet
phase z � 1 whereas in the model studied here z is finite
and diverges in the limit g! 0. A temperature dependent
fraction of effective moments has also been observed in a
2D model of interacting localized moments [34]. However,
there the asymptotic T ! 0 susceptibility is always Curie-
like, and there is long-range order at T � 0. An RG cal-
culation for random frustrated moments in the continuum
shows a ��T� divergence with varying exponent [35]. The
ground state properties were not accessible in that study.

The bilayer multicritical point �p�; g�� has been argued
[15,16] to influence finite-temperature properties of single-
layer Zn doped cuprate antiferromagnets, for which a
dynamic exponent z � 1:4 was found in neutron scattering
experiments [21]. However, although g� is small (�0:12) it
is difficult to explain how bilayer quantum criticality could
be realized when T � g � 0 (due to an expected crossover
at T � g; see Fig. 2). Physical realizations of single-layer
dimer dilution are not immediately obvious. Nevertheless,
the results presented here serve to illustrate rich and sur-
prising behaviors arising from the interplay of classical
percolation and quantum fluctuations, going beyond pre-
vious examples of scaling in percolating fractal structures
[36].
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