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We study the electronic structure of a strongly correlated d-wave superconducting state. Combining a
renormalized mean field theory with direct calculation of matrix elements, we obtain explicit analytical
results for the nodal Fermi velocity vF, the Fermi wave vector kF, and the momentum distribution nk as a
function of hole doping in a Gutzwiller projected d-wave superconductor. We calculate the energy
dispersion Ek and spectral weight of the Gutzwiller-Bogoliubov quasiparticles and find that the spectral
weight associated with the quasiparticle excitation at the antinodal point shows a nonmonotonic behavior
as a function of doping. Results are compared to angle resolved photoemission spectroscopy of the high-
temperature superconductors.
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Recent progress in angle resolved photoemission spec-
troscopy (ARPES) of the high-temperature superconduc-
tors has led to considerable interest in the electronic
structure of a strongly correlated d-wave superconducting
state [1,2]. Experiments show a variety of interesting phe-
nomena, and it is generally agreed that strong electronic
correlations play a dominant role in explaining some of the
universal spectral features. Hence, it would be desirable to
obtain, e.g., for comparison with experimental results,
explicit analytical results from a simple model of a strongly
correlated d-wave superconductor.

Thus motivated, we consider in this Letter the electronic
structure of a Gutzwiller projected superconductor, de-
fined by the ground state wave function exp�iS�j�i �
exp�iS�PGj�0i. The projection operator PG �

Q
i�1�

ni"ni#�, acting on a BCS wave function j�0i, eliminates
states with double occupancies in j�i. The operator
exp�iS� allows for a systematic calculation of corrections
to the fully projected state j�i [3,4]. Gutzwiller projected
states j�i were initially proposed as variational states to
describe superconductivity in the proximity of a Mott
insulating phase [5–7]. They have been used recently for
numerical investigations of the electronic structure of the
high-temperature superconductors. Paramekanti et al. used
a variational Monte Carlo (VMC) technique to study some
spectral properties of a Gutzwiller projected d-wave su-
perconductor [3]. Yunoki et al. extended the VMC tech-
nique to the direct calculation of excited states in Jastrow-
Gutzwiller wave functions [8]. The VMC technique also
allows one to study the coexistence of superconductivity
with antiferromagnetism [9] and the quasiparticle current
renormalization [10].

In this Letter, we will follow an alternate route and use a
combination of renormalized mean field theory (RMFT)
[7] and direct calculation of matrix elements [4,11] to
examine the electronic structure of a Gutzwiller projected
d-wave superconductor. Though Gutzwiller projection is
only an approximate method to treat the effects of strong
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correlations, the advantage lies in its directness and clarity.
Explicit analytical expressions derived in this Letter can be
used to evaluate directly the successes as well as the
limitations of this approach. Using RMFT, we determine
the energy dispersion Ek of the Gutzwiller-Bogoliubov
quasiparticles and the nodal Fermi velocity vF. We show
that vF stays finite as the (Mott) insulating phase is ap-
proached. We calculate the spectral weight associated with
the d-wave quasiparticles and the momentum distribution
nk by a direct evaluation of the relevant matrix elements
[11]. We find that the quasiparticle weight associated with
the antinodal excitation exhibits a nonmonotonic behavior
as a function of doping.

We consider the one band Hubbard model

H � �
X
hiji;�

t�ij��c
y
i�cj� � c

y
j�ci�� �U

X
i

ni"ni#;

where the hopping integrals t�ij� connect sites i and j.
We will restrict our attention to nearest (t) and next near-
est (t0 � �t=4) neighbor hopping. We choose an on-site
repulsion U � 12t; i.e., we work in the strong coupling
regime U� t; t0 [12]. In this limit, a unitary transfor-
mation exp�iS� yields an effective Hamiltonian Heff �
exp��iS�H exp�iS�, which is block diagonal and does
not mix states between the lower and upper Hubbard
bands [3,13]. To O�t2=U�, it corresponds to the t� J
Hamiltonian with the correlated hopping term (three-
site term), for which the Gutzwiller wave function
PGj�0i has been established as an excellent variational
ground state [6]. Retransformation of the trial wave func-
tion exp�iS�PGj�0i then provides a systematic way to
study the Hubbard model using Gutzwiller projected states.

Two steps are necessary to obtain explicit analytic ex-
pressions for the low energy properties in the strong cou-
pling regime. The first is the Gutzwiller renormalization
procedure, where the effects of the projection PG are taken
into account by appropriate renormalization factors,
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FIG. 1 (color online). (a) Doping dependence of the dimen-
sionless mean field parameters �, �0, �; (b) doping dependence
of (solid line) the SC order parameter � and (dashed line) the SC
gap �j~�kj, at k � ��; 0� for t � 300 meV. The RMFT SC gap is
scaled by a factor � � 1=2 for comparison with experimental
data (red circles, Bi2212 [1]).
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FIG. 2 (color online). Doping dependence of (a) Fermi veloc-
ity vF and (b) renormalization Zk of the Gutzwiller-Bogoliubov
nodal quasiparticle. RMFT results are compared with experi-
ments [in (a), data from Ref. [19]] and VMC [in (b), data from
Ref. [3]], respectively.
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following Hilbert space counting arguments:
h�0jPGHeffPGj�0i � h�0j ~Heffj�0i [7,14,15].

The next step is the realization that ~Heff allows for two
types of molecular fields: the hopping amplitude �r �P
�hc

y
i�ci�r�i0 and the singlet pairing amplitude �r �

hcyi"c
y
i�r# � c

y
i#c
y
i�r"i0, where r connects nearest (NN) or

next nearest neighboring (NNN) sites; h. . .i0 denotes the
expectation value with respect to j�0i.

This decoupling scheme of the renormalized Hamilton-
ian (RMFT) leads to a BCS ground state j�0i �

Q
k�uk �

vkc
y
k"c
y
�k#�j0i, with v2

k � �1� �k=Ek�=2 and u2
k � 1� v2

k.
The corresponding gap equations are �r � ��1=L� 	P
k cos�kr��k=Ek and �r � �1=L�

P
k cos�kr�~�k=Ek, to-

gether with the condition x � �1=L�
P
k�k=Ek for the

hole-doping concentration [7,16].
Solving the gap equations, we find that a d-wave pairing

state is most stable for x 
 0:4. In this case, � � j�xj �

j�yj, with �x���y, ���x��y, and �0 � �x�y � �x�y.
The dispersion relation of the Gutzwiller-Bogoliubov

quasiparticle is given by Ek�
����������������
�2
k��2

k

q
, where

�k � �
�

2gtt� J
�
4
x1 � J

0 �
0

4
x2

�
�coskx � cosky�

�

�
2gtt0 � J00

�0

4
x1 � J0

�
4
x2

�
2 coskx cosky

� xD
X
���0

t�t�0

4U
cos�k��� �0�� ��; (1)

~� k � J
�

4
�3gs � 1� �3� x�g3��coskx � cosky�: (2)

In Eqs. (1) and (2), the Gutzwiller factors corresponding to
the kinetic, superexchange, and the three-site terms are
gt � 2x=�1� x�, gs � 4=�1� x�2, and g3 � 4x=�1�
x�2, respectively [14]. The last sum in Eq. (1) is a sum
over all pairs of neighboring sites � and �0, where t� and t�0
are the NN and NNN hopping terms, respectively. We
define J � 4t2=U, J0 � 4t0t=U, and J00 � 4t02=U and ab-
breviate x1 � 3gs � 1� 3�3� x�g3, x2 � 4�3� x�g3,
and xD � �1� x2�g3 in Eq. (1).

Figure 1(a) shows the doping dependence of the mean
field hopping parameters � and �0 and the d-wave mean
field pairing �, obtained by solving the RMFT gap equa-
tions. Since gt, g3, x2, xD, and �0 vanish as x! 0, the
dispersion relation �k ! ��11=4�J��coskx � cosky� in the
limit of zero doping.

The d-wave order parameter � decreases nearly linearly
with doping and vanishes around x � 0:4, for our choice of
parameters. This is in agreement with previous studies
[7,17]. Note that we retain all terms of O�t2=U� in the
effective Hamiltonian Heff , including the three-site term,
which suppresses d-wave pairing in the overdoped regime.

The doping dependence of the superconducting (SC)
gap j~�kj at k � ��; 0� is shown in Fig. 1(b). The doping
dependence resembles experimental observations quite
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well. However, the gap is overestimated by a factor of
about 2 [see scaling factor � � 1=2 in Fig. 1(b)] within
mean field theory, which neglects additional off-site corre-
lations as well as dynamical effects due to the motion of
holes [18]. The SC gap is not identical to the true SC order
parameter � � jhcyi"c

y
i��# � c

y
i#c
y
i��"ij [3,7]. Here � is a

neighboring site and h. . .i represents the expectation value
calculated with the retransformed wave function
exp�iS�PGj�0i. Calculating � to O�t=U�, we find � �
gt�� �t=U�g3�6� x���, where we set t0 � 0 for simplic-
ity. As shown in Fig. 1(b), � vanishes as x! 0, as it
should.

We now consider the nature of the low lying excitations,
the quasiparticles created at the nodal point kF. The nodal
dispersion around kF is characterized by the velocity vF,
which directly influences a number of experimentally ac-
cessible quantities. Within RMFT, vF is directly obtained
by calculating the gradient of �k along the direction
�0; 0� ! ��;��. The result is presented in Fig. 2(a) (for t �
0:3; 0:4; 0:5 eV and a0 � 4 �A) and is well approximated
by the formula

vF=a0 �
���
2
p

sinkF

�
2gt�t� 2t0 coskF� � x1

J
4
�
�
: (3)

In the above equation, we set J0, J00, and xD to zero for
simplicity. As seen in Fig. 2, vF increases with x but
remains finite as x! 0. As can be inferred from Eq. (3),
2-2
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FIG. 3 (color online). (a) Energy dispersion ! � �Ek,
(b) quasiparticle weight Zkn0

k�, and (c) momentum distribution
hnk�i of the Gutzwiller-Bogoliubov quasiparticle for different
doping x; the energy dispersion [in (a)] is shown only when the
corresponding quasiparticle weight is finite [see (b)]. The cor-
responding Fermi surface �k � 0 is shown in the inset in (a).
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the energy scale of the nodal velocity at x � 0 is deter-
mined by J; i.e., vF=�a0J� �

���
2
p

sin�kF�
11
4 � � 1:5 (for

� � 0:38 and kF �
�
2 ). The observed doping dependence

stems from the effects of Gutzwiller projection PG. As x
increases, holes gain kinetic energy by direct hopping, viz.,
gt increases with doping, but gs decreases, leading to the
doping dependence of vF seen in Fig. 2.

Our results agree with the numerical VMC results of
Paramekanti et al., who extract vF from the discontinuity
of the first moment of the spectral function in the repulsive
U Hubbard model [3], and those of Yunoki et al., who
obtain vF from the quasiparticle dispersion in the t� J
model [8]. A comparison to ARPES data [19], presented in
Fig. 2(a), shows good agreement. The doping dependence
of vF in the severely underdoped regime remains to be
settled experimentally. While some groups report a nearly
constant Fermi velocity [see data for La2�xSrxCuO4

(LSCO) in Fig. 2], others observe an increase with doping
[see data for YBa2Cu3O7�� (YBCO) and
Bi2Sr2CaCu2O8�� (Bi2212) in Fig. 2]. Within RMFT, we
also verify that the nodal properties remain essentially
unchanged when � is set to 0; i.e., the doping dependence
of vF results from the vicinity of the state to a Mott insu-
lator, rather than the occurrence of superconductivity itself.

We now calculate the spectral weight of the Gutzwiller-
Bogoliubov quasiparticle (QP). The variational excited
state in a projected superconductor is given by
exp�iS�j��k i � exp�iS�P	y�k#j�0i, where the correspond-

ing Bogoliubov QP operator is defined by 	y�k# �ukc
y
�k# �

vkck". In ARPES, the spectral weight corresponding to this
excitation is determined by the matrix element M�k �
jh��k j~ck"j�ij

2=�N�k NG�, where N�k and NG are the norms
of j��k i and j�i, respectively. Here ~ck;� �
exp��iS�ck;� exp�iS�. Using the Gutzwiller renormaliza-
tion scheme, we find M�k � Zkn

0
k� �O�t=U�2 [20] and

Zk � gt �
g3

U

�
1� x2

2

0
k �

3� x
L

X
k0
v2
k0


0
k0

�
(4)

for the QP renormalization [21], with 
0
k � 2t�coskx �

cosky� � 4t0 coskx cosky. Here n0
k� � v2

k is the momentum
distribution in the unprojected wave function j�0i. The
renormalization Zk of the nodal QP weight is plotted as a
20700
solid line in Fig. 2(b) and agrees well with VMC results
[3]. The dashed lines correspond to results without t=U
corrections. The dotted line Zk � x is the result from slave
boson mean field theory (SBMFT).

As a qualitative comparison with ARPES, we show the
energy dispersion ! � �Ek of the Gutzwiller-Bogoliubov
QP along the directions �0; 0� ! ��; 0�, ��; 0� ! ��;��,
and ��;�� ! �0; 0� for different x in Fig. 3. We emphasize
that our calculations describe the low energy sector and do
not seek to explain the ‘‘kink’’ at higher energies [19].

The spectral weight of the coherent peak, measured in
ARPES, is related to the QP weight M�k � Zkn

0
k�; it is

shown in Fig. 3(b). As seen in the figure, the QP spectral
weight is severely modified by Gutzwiller projection. It
decreases with doping and vanishes at half-filling. This
causes a shift of spectral weight to an incoherent back-
ground as seen in the momentum distribution function
hnk�i � Zkv2

k � n
inc
k� �O�t=U�2. While the first term cor-

responds to the coherent QP weight, the second gives the
distribution of the incoherent part. We get
ninc
k� �

�1� x�2

2�1� x�
�
X
�

t�
2U

cos�k��
�
�1� x�3

1� x
�

�
3gs � 1

2
� g3

3� x
2

�
j��j

2 �

�
3gs � 1

2
� g3

3� x
2

�
�2
�

�
; (5)
which is a smooth function of k. Results are shown in
Fig. 3(c). The incoherent weight is spread over the entire
Brillouin zone and overlies the coherent part from the
Gutzwiller-Bogoliubov quasiparticles. At half-filling, all
weight becomes incoherent.

Finally, we consider the coherent QP weight M�k �
Zkv2

k at the antinodal point k � ��; 0�. As seen in
Figs. 3(b) and 4, it exhibits a nonmonotonic behavior as
a function of doping. Within our theory, this effect arises
from a combination of the effects due to Gutzwiller pro-
jection and the topology change [see inset in Fig. 3(a)] of
the underlying Fermi surface (FS). Figure 4(a) illustrates
this clearly. While the QP weight renormalization Zk in-
creases with increasing doping, n0

k � v2
k decreases due to

the topology change, which occurs at x � 0:15–0:20 for
our choice of hopping parameters (t0 � �t=4). The change
of the FS seems to be a generic feature of hole doped
cuprates [22], although the exact doping concentration x,
2-3
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for which this occurs, is sensitive to the ratio between
various hopping parameters. The combined effect of strong
correlations and topology change leads to a maximum of
the QP weight for the doping level x, at which the under-
lying FS changes topology. This result should be tested by
appropriate analyses of recent ARPES data [22].
Indications for such a behavior have already been pub-
lished [23,24]. Feng et al. [23] extracted the superconduct-
ing peak ratio [SPR, illustrated in Fig. 4(b)], which is
proportional to the coherent QP spectral weight Zkv2

k.
They found that the SPR increases with small x and attains
a maximum value around x � 0:2, where it begins to
decrease. Ding et al. [24] reported similar results from
ARPES. Although the topology change does not influence
the stability of the SC state within RMFT, the SC pairing
parameter � (related to Tc) and the QP weight Zkv2

k show
some similarity as a function of doping.

To summarize, we studied the electronic structure of a
Gutzwiller projected d-wave superconductor. A systematic
combination of renormalized mean field theory and direct
evaluation of matrix elements was applied to the Hubbard
model in the strong coupling limit. Our analytical results
can be used to fit experimentally observed quantities as
well as those obtained from numerical methods. The dis-
persion of the Gutzwiller projected superconductor is re-
normalized in the vicinity of the Mott insulator, but the
nodal Fermi velocity stays finite as the insulating limit is
approached. The spectral weight of the nodal quasiparticle
increases with doping, whereas that of the antinodal exci-
tation shows nonmonotonic behavior, when the underlying
Fermi surface changes topology. Our results can be
checked by experimental observations from ARPES of
high-temperature superconductors, thus providing a way
to study the applicability of projected wave functions to
these systems. The method we use is also amenable to
other extensions such as coupling to the lattice, antiferro-
magnetism, and long range interactions.
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