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Symmetry and Stability of 6 Plutonium: The Influence of Electronic Structure

K. T. Moore,"* P. Séderlind,' A.J. Schwartz,' and D. E. Laughlin®

'Lawrence Livermore National Laboratory, Livermore, California 94550, USA

*Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 USA
(Received 27 September 2005; published 26 May 2006)

Using first-principles density-functional theory, we calculate the bond strengths between the 12 nearest
neighbors in § plutonium for both pure Pu and a Pu-3.7 at. % Ga alloy. Our results for pure Pu reveal a
structure with the monoclinic space group Cm rather than face-centered cubic Fm3m, showing that the
anomalously large anisotropy of 6 plutonium is a consequence of greatly varying bond strengths between
the 12 nearest neighbors. Further results for a Pu-3.7 at. % Ga alloy show that the nearest-neighbor bond
strengths around a Ga atom are more uniform. Hence, our calculations address (i) why the ground state of
Pu is monoclinic, (ii) why distortions of the & phase are viable, with considerable implications for the
behavior of the material as it ages due to anisotropic response to self-irradiation, and (iii) why Ga

stabilizes face-centered cubic 6-Pu.
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Classical crystallography does not incorporate anisot-
ropy of atomic bonds within its framework; rather, it
assumes a spherical atom occupies each lattice site [1].
While this assumption is justifiable for some elements, it
becomes less reliable for those with complicated electronic
structures. Nowhere is this more apparent than for pluto-
nium, which is the most enigmatic metal in the periodic
table [2—8]. Recently, the phonon dispersion curves for
single-grain & plutonium were recorded using inelastic
x-ray scattering [9], confirming other measurements
[10,11] that it is the most anisotropic face-centered cubic
(fcc) metal known. The shear moduli C,4 and C’ differ by a
factor of ~7, which is in strong contrast to aluminum
exhibiting a factor of 1.2 [12]. In addition, §-Pu has a
negative coefficient of thermal expansion and has the
most crystallographically expanded lattice of all six Pu
allotropes (fcc is usually the most densely packed crystal
structure). This is evidence that a simple hard-sphere as-
sumption is inappropriate for Pu and that the bonding
strengths between the 12 nearest neighbors of the fcc
6-Pu lattice are not equal. In turn, this means that the total
symmetry of the metal may not be fcc but rather a lower-
symmetry class.

Here we present a novel use of first-principles calcula-
tions, which yields the bond strengths of the 12 nearest
neighbors within the 6-Pu crystal of both pure Pu and a
Pu-3.7 at.% Ga alloy. Using these calculated bond
strengths, we systematically progress through crystallo-
graphic arguments, showing that the 6 phase of pure Pu
belongs to the monoclinic space group Cm rather than the
cubic Fm3m space group. Our results provide new insight
into why plutonium is the only metal with a monoclinic
ground state and why tetragonal, orthorhombic, or mono-
clinic distortions of §-Pu are likely. These distortions have
considerable ramifications for the behavior of the metal as
it ages, accumulating damage via self-irradiation. We also
present results for a Pu-3.7 at. % Ga alloy that show that the
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bond strengths around the Ga atom are more uniform than
for a Pu atom surrounded by other Pu atoms, a result that
illuminates why Ga acts to stabilize the fcc & phase over
the monoclinic & phase.

Let us begin with a two-dimensional array of blocks, as
shown in Figs. 1(a) and 1(b). First, a square array of points
is created, which is the lattice. Blocks are then incorpo-
rated around each lattice point, which is the motif. The
resulting structure is shown Fig. 1(a). The combination of a
lattice and motif in two dimensions results in a plane
group, the two-dimensional analog to a space group for
three dimensions. This two-dimensional structure in
Fig. 1(a) has a plane group symmetry of 4mm, because
there is an axis of fourfold rotation about each lattice point
and there are four mirror planes marked m;, m,, ms, and
my. When the upper-left and lower-right corners of each
block are filled, the motif is altered. The plane group
symmetry of this structure is accordingly reduced to
2mm because of the loss of fourfold symmetry and the
elimination of the m; and m, mirror plane planes. The
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FIG. 1 (color online). Two periodic arrays illustrating repeti-
tion of a lattice (points) and a motif (blocks). (a) A pattern
showing a plane group symmetry of 4mm and (b) a pattern
showing a plane group symmetry of 2mm, reduced only by a
change in the motif, not the lattice.
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important point here is that the structure in Fig. 1(b) still
has a square lattice, even though the axis of fourfold
symmetry is lost and the total symmetry of the structure
is reduced.

An example of this idea in three dimensions and in a real
crystal is the body-centered cubic (bcc) structure of a-iron.
When paramagnetic, the structure has a bcc space group of
Im3m. However, when the crystal structure becomes fer-
romagnetic with aligned moments in the [001] direction,
the symmetry is reduced to I4/mm'm’, as shown in Fig. 2
[13]. From a geometry standpoint, a = b = c, but the fact
that the spins are aligned along the z axis lowers the
symmetry of the crystal structure. Thus, there do not
need to be atomic displacements, and, correspondingly, a
change in lattice, to reduce the total symmetry of the
structure.

In the case of the two-dimensional array of blocks in
Fig. 1 (plane group) or in the three-dimensional bce struc-
ture of a-iron (space group), the same point comes out:
The lattice itself may remain high symmetry, but the
crystal structure as a whole may be reduced in symmetry
due to a change in motif. This is because the symmetry of
any plane or space group is composed of the intersection of
the symmetries of a lattice and a motif. In ferromagnetic
a-iron, the magnetic moment produced by the outermost
valence electrons not only degrades the symmetry from bcc
to tetragonal but also alters the macroscopic properties that
we observe, such as elastic constants, shear modulus, and
phase transformations. While a magnetic moment can
reduce symmetry as described above, other aspects of the
outermost bonding electrons can also affect the symmetry.

Armed with this knowledge, let us return to the case of
6-Pu. We begin with the assumption that the lattice is fcc
with a = b = ¢. A motif is then created, which is the bond
strengths for the 12 nearest neighbors. The question is if an
fcc lattice is joined with a motif of anisotropic bonds, what
is the resultant space group? In order to resolve this issue,
the detailed electronic structure of Pu must be determined
and, in particular, the variation of the nearest-neighbor
bond strengths. By calculating the energy response (AE)

FIG. 2. The structure of a-iron. The crystal has a body-
centered cubic space group of Im3m when paramagnetic but is
reduced to 14/mm’'m’ when the crystal becomes ferromagnetic
with aligned moments in the [001] direction.

of a ~2% (0.049 A) displacement of an atom along each of
the 12 nearest-neighbor directions, an approximate force or
strength of the bonds is realized. This energy response or
force F (mRy/A) is the “bond strength.” These energies
are obtained from first-principles electronic-structure cal-
culations within the framework of density-functional the-
ory (DFT). This approach has proven to be remarkably
accurate for Pu [14], whose electron-correlation effects and
their origin are still debated. Regardless of the exact
mechanisms, spin-polarized DFT approximates the ener-
gies of these correlations well. The computational details
are similar to those in Ref. [14], with the major difference
being that here we study a 27-atom supercell of fcc Pu to
allow for the above-mentioned atomic displacements. To
simplify the calculations, the effect of electron spin is only
accounted for by a parallel arrangement and not coupled to
the orbital degree of freedom. This assumption is believed
to be valid, because most of the polarization effects are
captured by the spin degree of freedom, and the ferromag-
netic arrangement gives very similar equilibrium volume,
bulk modulus, elastic constants, and thus overall chemical
bonding as the preferred disordered state [15].

The results of the calculations for pure Pu are shown in
Table I and Fig. 3. The nearest-neighbor direction (x, y, z),
Miller indices (A, k, [), and bond strength F (mRy/A) due
to the change in energy resulting from a 2% shift of the
0, 0, 0 atom are shown in Table I. Notice how F varies from
~3.3 to ~5.3 for pure Pu, showing the large degree of
variation in bond strength between the 12 nearest neigh-
bors. As shown in Fig. 3, the 12 nearest neighbors can be
separated into six pairs of two where the bond strengths are
close in value: blue (3.3), black (3.5-3.7), red (3.7-3.9),
pink (3.9-4.1), green (4.5-4.7), and brown (4.7-5.3). In the
(001) plane, the [110] bond is roughly equal to the [110]
bond (green), and the [110] bond is roughly equal to the
[110] bond (black). In the {011} planes, we see that [011] ~
[101] (blue), [01 1] ~[101] (red), [011] ~ [101] (pink),
and [011] ~ [101] (brown). It is important to note that
not only the bond strength but also the repeatability of
groupings dictate the choice of sets. In other words, there is
a clear separation between the brown and pink sets and a
clear separation between the red and blue sets. It is inter-
esting that the bonds in the (001) plane are almost equal
directly across the central atom, whereas the bonds in the
{011} planes are not and have a more complicated
arrangement.

When an fcc lattice is joined with the calculated bond
strengths as a motif, the resultant structure is c-centered
monoclinic with the space group Cm. This low-symmetry
space group is due to the fact that, besides translational
symmetry, there is no rotational symmetry and only one
mirror plane along the (110) plane. This space group has
several ramifications. First, it now seems no coincidence
that the ground state @ phase of Pu is monoclinic P2;/m
and that here we show &-Pu exhibits a monoclinic space
group when the bonding strengths are accounted for as the
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TABLE I. The nearest-neighbor direction in (x, y, z) coordinates, Miller indices (k, k, {), and bond strength F (mRy/A) for pure Pu

and a gallium atom in a Pu-3.7 at. % Ga alloy.

Pure Pu Pu-3.7 at. % Ga
Nearest neighbor (x, y, z) Miller indices (h, &, [) F (mRy/A) F (mRy/A)
0.5,0.5,0 1,1,0 4.7 6.3
—-0.5, —0.5,0 -1,—-1,0 4.5 6.1
0.5, -0.5,0 1,-1,0 3.7 6.3
—-0.5,0.50 -1,1,0 3.5 6.4
0.5,0,0.5 1,0,1 4.1 7.0
—-0.5,0,-0.5 -1,0, -1 33 5.6
-0.5,0,0.5 -1,0,1 4.7 4.4
0.5,0, —0.5 1,0, —1 39 5.5
0, —0.5,0.5 0,-1,1 39 7.3
0,0.5, —0.5 0,1, -1 33 5.9
0,0.5,0.5 01,1 53 6.0
0, —0.5, —0.5 0,1, -1 3.7 6.0

motif. Also, B-Pu is C2/m, where the only difference
between the two space groups C2/m and Cm is an axis
of twofold rotation perpendicular to the mirror plane. (Of
course, in the real structures there is also a slight change of
atomic positions.) The reduced space group of Cm for 6-Pu
yields a viable path for the § < ' phase transformation of
Pu and Pu alloys. It has been shown that, at low pressures
(~0.4 GPa), § transforms first to B’ then to ' in Pu-Ce
[16] and Pu-Al [17] alloys. Given how close the space
groups are between the reduced space group of Cm for
8-Pu and C2/m B-Pu, this intermediate transformation to
B makes sense.

A second important consequence of these calculations is
that the structure is not centrosymmetric (defined as x =
—x; y = —y; z = —z). Classical crystallography assumes
spherical atoms occupy each lattice site and that fcc crys-
tals are centrosymmetric. However, the above arguments
show that this is a flawed idea for 6-Pu. The electronic
structure (dominated by 5f states) produces bonding in the
6 phase of pure Pu with largely varying strengths between
the 12 nearest neighbors, thus making the crystal highly
anisotropic and one that is the least applicable candidates
for centrosymmetry compared to other fcc metals.

If one is to imagine a spectrum of isotropy, aluminum
would reside on one side and plutonium on the other. With
this in mind, we performed the same calculations on alu-
minum, which is well known to be the most isotropic fcc
metal [18,19]. The results, which are in the same units as
the Pu results, lie within 7.55-7.57 for the nearest-neighbor
bond strengths. The slight variation in the resulting num-
bers is numerical noise. In other words, the method used
above shows aluminum to have bond strengths for the
12 nearest neighbors which are identical, further support-
ing that Al is a highly isotropic metal.

The reduction of symmetry of §-Pu illustrated above
clarifies recent experimental results, such as those from
Lawson et al. [20,21] that suggest a tetragonal distortion
occurs in Ga-stabilized 6-Pu. In the work by Lawson et al.

[20,21], neutron diffraction revealed that the widths of the
peaks were temperature dependent for Puy.ggGag.p. As the
sample was cooled, peak broadening occurred, increasing
with subsequent cooling cycles. This effect disappeared
when heated to 650 K. The diffraction peaks were aniso-
tropic, which were modeled by assuming a small tetragonal
distortion to the crystal. Because the changes of the dif-
fraction peaks were observed at low temperatures, it is
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FIG. 3 (color online). Two stacked fcc unit cells with the
central atom showing the 12 nearest neighbors. In the case of
pure plutonium, the 12 bonds with the nearest neighbors vary
widely with strength and can be separated into six pairs. When
the fcc lattice is combined with the motif of these bond strengths,
the resultant structure is monoclinic Cm.
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possible that they are due to the anisotropic response of the
6-Pu matrix to the ingrowth of monoclinic @’-Pu particles
that form during an isothermal martensitic phase trans-
formation at low temperatures [22]. If one introduces
precipitates or defects such as vacancies, interstitials, dis-
locations, and/or He bubbles [23] into an anisotropic me-
dium, the variation in bond strength will cause the lattice to
extend more in the soft directions and less in the rigid
directions. Thus, tetragonal, orthorhombic, or monoclinic
distortions in aged Ga-stabilized §-Pu are logical, because
precipitation of second-phase particles or the accumulation
of damage will strain the lattice and contract or expand it
disproportionately in different directions. Also of note is
the small value of C’ for 8-Pu [9,24,25], which implies a
soft response of the system to a volume-conserving te-
tragonal distortion.

Taking our approach one more step, we may now repeat
the above calculations with a Ga atom in the central
position of our 27-atom supercell and being subject to
the displacement. In this case, we find that the energy
response is more uniform than for pure Pu (see Table I).
Most all of the bond strengths are near F = 6 with the
exception of [010] (F = 7.0), [011] (F = 7.3), and [101]
(F = 4.4). Why these bond forces are so high and low in
value is not clear; however, the other 9 bonds are rather
uniform. This uniformity in force implies that the bond
strengths surrounding the Ga atom are higher in symmetry,
thus supporting a higher-symmetry structure. In other
words, these calculations illustrate why Ga acts to stabilize
the high-symmetry fcc & phase at room temperature by
making the bond strength about the Ga atom less
anisotropic.

The extended x-ray absorption fine-structure spectros-
copy results of Cox et al. [26] support our calculations for
both the pure Pu and the Pu-3.7 at. % Ga alloy. In their
experiments on Ga-stabilized 6-Pu, it was observed that
the local structure of plutonium about the Ga atoms was
well defined and similar to a typical fcc metal. However,
the local structure of plutonium around Pu atoms was
disordered. Our calculations show exactly this: The bonds
in pure Pu are highly anisotropic and thus produce a
“poor” fcc structure, whereas the bonds about a Ga atom
are less anisotropic and thus produce a more typical or
“better’’ fcc structure, albeit not as good as aluminum.

In conclusion, we have shown that, when an fcc lattice is
joined with the calculated anisotropic bonding of the
12 nearest neighbors as the motif (lattice + motif =
space group), the resultant space group of pure & phase
Pu is Cm rather than Fm3m. Our results enlighten why
a-Pu is the only metal with a monoclinic ground state,
reveal that 6-Pu does not have a center of symmetry, and
lend a fundamental explanation for the tetragonal distor-
tion purported to occur in Ga-stabilized 6-Pu as defects are
introduced or as lattice damage is accumulated. Further-
more, our calculated bond strengths about a Ga atom in a
3.7 at. % Ga alloy show that the bonds are more uniform

and symmetric, illuminating how Ga plays a stabilizing
role for the & phase at room temperature where the mono-
clinic & phase is observed in pure Pu. Finally, these results
use first-principles theory in a novel way and systemati-
cally illustrate that an expansion of classical crystallogra-
phy that accounts for anisotropic electronic structure can
be used to explain complicated materials in a way previ-
ously not considered.
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