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Influence of Turbulence on the Dynamo Threshold
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We use direct and stochastic numerical simulations of the magnetohydrodynamic equations to explore
the influence of turbulence on the dynamo threshold. In the spirit of the Kraichnan-Kazantsev model, we
model the turbulence by a noise, with given amplitude, injection scale, and correlation time. The addition
of a stochastic noise to the mean velocity significantly alters the dynamo threshold and increases it for any
noise at large scale. For small-scale noise, the result depends on its correlation time and on the magnetic
Prandtl number.
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The process of magnetic field generation through the
movement of an electrically conducting medium is called a
dynamo. In a fluid, the instability occurs when the mag-
netic Reynolds number Rm exceeds some critical value
Rmc. Despite their obvious relevance in natural objects,
such as stars, planets, or galaxies, dynamos are not so easy
to study or model. Computer resources limit the numerical
study of dynamos to a range of either small Reynolds
numbers Re (laminar dynamo), modest Rm and Re [1],
or small Pm � Rm=Re using large eddy simulation [2].
These difficulties explain the recent development of ex-
periments involving liquid metals as a way to study the
dynamo problem at large Reynolds number. In this case,
the flow has a nonzero mean component and is fully
turbulent. There is, in general, no exact analytical or nu-
merical prediction regarding the dynamo threshold.
However, prediction for the mean-flow action can be ob-
tained in the ‘‘kinematic regime’’ where the magnetic field
backreaction onto the flow is neglected (see, e.g., [3]). This
approximation is very useful for optimization of experi-
ments, so as to get the lowest threshold for dynamo action
based only on the mean flow RmMF

c [4–7]. It led to an
accurate estimate of the measured dynamo threshold in the
case of experiments, where the instantaneous velocity field
is very close to its time average [8].

In contrast, unconstrained experiments with shear in the
equatorial plane [7,9] are characterized by large velocity
fluctuations, allowing the exploration of the influence of
turbulence onto the mean-flow dynamo threshold.
Theoretical predictions regarding this influence are scarce.
Small velocity fluctuations produce little impact on the
dynamo threshold [10]. Predictions for arbitrary fluctua-
tion amplitudes can be reached by considering the turbu-
lent dynamo as an instability (driven by the mean flow) in
the presence of a multiplicative noise (turbulent fluctua-
tions) [11]. In this context, fluctuations favor or impede the
magnetic field growth depending on their intensity or
correlation time. This observation is confirmed by recent
numerical simulations of simple periodic flows with non-
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zero mean flow [12,13] showing that turbulence increases
the dynamo threshold.

In the sequel we use direct and stochastic numerical
simulation of the magnetohydrodynamic (MHD) equations
to explore a possible explanation, linked with the existence
of nonstationarity of the largest scales. We found that the
addition of a stochastic noise to the mean velocity could
significantly alter the dynamo threshold. When the noise is
at small scale, the dynamo threshold is decreased, while it
is increased for a large-scale noise. In the latter case, the
noise correlation time plays a role, and reinforces this
effect, as soon as it is larger than the mean eddy-turnover
time. When interpreted within the Kraichnan-Kazantsev
model of MHD flow, these results predict that large-scale
(small-scale) turbulence inhibits (favors) dynamo action.

The MHD equations for incompressible fluids are

@tu� u � ru � �rP� �r2u� j�B� f�t�vTG; (1a)

@tB � r� �u� B� � �r2B: (1b)

Here, u is the velocity, B the Alfvén velocity, P the
pressure, � the viscosity, � the magnetic diffusivity, j �
r� B, vTG � �sinx cosy cosz;� cosx siny cosz; 0� the
Taylor-Green (TG) vortex, and f�t� is set by the condition
that the �1; 1; 1� Fourier components of the velocity remain
equal to vTG. The equations are integrated on a triply
periodic cubic domain using a pseudospectral method.
The aliasing is removed by setting the solution of the 1=3
largest modes to zero. The time marching is done using a
second-order finite difference scheme. An Adams-
Bashforth scheme is used for the nonlinear terms while
the dissipative terms are integrated exactly. The two con-
trol parameters are the Reynolds number Re � vrmslint=�
and the magnetic Reynolds number Rm � vrmslint=�,

where vrms � �1=3�
������
2E
p

� �1=3�
���������
hu2i

p
is the (spatial)

rms velocity based on the total kinetic energy E �R
E�k�dk and lint � �3�=4�E=

R
kE�k�dk is the integral

scale of the turbulent flow. Both vrms and lint fluctuate
with time. Thus, viscosity and diffusivity are dynamically
3-1 © 2006 The American Physical Society
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FIG. 1. Simulation parameter space. The square refer to DNS-
MHD and LES-MHD simulations, and the shaded areas to ex-
plored windows of dynamo action for kinematic simulations
with mean flow. �, no-dynamo case; ��, intermittent dynamo;
�, dynamo case; �, undecided state; solid line, Rmturb

c ; dashed
line, RmMF

c ; dot-dashed line, end of the first kinematic dynamo
window; dotted line, beginning of the second kinematic dynamo
window.
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monitored so as to keep Re and Rm constant. We have
checked that Re is a simple linear function of a nondynam-
ical Reynolds number Reexp � vmax�=� (usually used in
experiments) based on maximum velocity and half the
simulation box: Re � 7:41Reexp. Detailed comparison
with previous results by Ponty et al. [2] is obtained by
multiplying our Re and Rm by a factor 8=

���
3
p

. In the sequel,
hXi ( �X) refers to the spatial (time) average of X.

We ran typically four types of simulations: (i) direct
numerical simulation (DNS)-MHD, where the full set of
Eq. (1) is integrated at 5 � Re � 100 and 5 � Rm � 50
using resolutions up to 2563; (ii) large eddy simulation
(LES)-MHD at resolution 1283, where the Lesieur-Chollet
model of turbulence is used for the velocity Eq. (1a),
allowing one to explore a case out of range of DNS [12],
Re � 500, 5 � Rm � 100; (iii) kinematic simulations;
(iv) kinematic-stochastic (KS) simulations. In these last
two cases, only the induction Eq. (1b) is integrated with
u set to a given velocity field. In the kinematic case, it
corresponds to the stationary velocity field �u�Re� obtained
through time average of a stable solution of the Navier-
Stokes equations with Taylor-Green forcing, at fixed
Reynolds number. This procedure is complicated by hydro-
dynamic instabilities at low Reynolds number [14], impos-
ing very long simulations (typically over 1000 s, i.e., 400
eddy-turnover times at Re � 46) to ensure convergence
towards an asymptotically stable solution. The average is
then performed over several (typically 200) eddy-turnover
times. In the KS case, the velocity field u � �u�Re� �
v0�kI; �c� is the sum of a time-averaged velocity field at a
given Re and of an external Markovian Gaussian noise,
with fixed amplitude v0, correlation time �c, and typical
scale kI. In both kinematic simulations, the magnetic
Reynolds number Rm is computed by using the rms ve-
locity and integral scale of u. In the deterministic case, this

amounts to using Vrms � �1=3�
���������
h �u2i

p
and Lint the (spatial)

rms velocity and integral scale of the time-averaged
velocity field, like in optimization of dynamo experiments
[4–7].

For each type of simulation, we fix Re (v0, �c, and kI, if
needed), vary Rm, and monitor the time behavior of the
magnetic energy hB2i and the finite-time Lyapunov expo-
nent � � 0:5@thln�B

2�i, where the average is taken over
the spatial domain. Four types of behaviors are typically
observed [14]. (i) No dynamo: the magnetic energy decays,
and the Lyapunov converges towards a finite negative
value. (ii) Intermittent dynamo: the magnetic energy re-
mains at a low level, with intermittent bursts of magnetic
energy, and zero most probable value for the magnetic
energy [11,15]. (iii) Mean-field dynamo: the magnetic
energy grows with positive Lyapunov, and, in the DNS-
MHD or LES-MHD, reaches a nonlinear saturated regime,
with nonzero mean magnetic energy. (iv) Undecided state:
with oscillation of the Lyapunov, so that no fit of the
Lyapunov exponent can be obtained. From the values of
20450
the Lyapunov in the dynamo and the no-dynamo regime,
one may derive the critical magnetic Reynolds number
Rmc�Re�, solution of ��Re;Rmc� � 0, through a standard
interpolation procedure.

A summary of our exploration of the parameter space is
provided in Fig. 1, for the nonstochastic simulations, where
the only control parameters are Rm and Re. We did not
detect any dynamo at Re � 2. Decreasing Rmc is observed
in the window 2< Re< 4, presumably caused by the al-
most 2D nature of the flow. Between Re � 4 and Re � 10,
we observed heterocline dynamos, oscillating between a
nondynamo and a dynamo state. The saturation state de-
pends on Rm, going from stationary mean-field dynamo
(Rm< 15), to intermittent dynamo 15< Rm< 30, then to
turbulent mean-field dynamo (Rm> 30). For 10< Re<
100, we observed only turbulent mean-field dynamos, with
critical magnetic Reynolds number for dynamo action in a
turbulent flow Rmturb

c increasing with Re, in quantitative
agreement with the result obtained in the same geometry,
but with a different forcing (at constant force instead of
constant velocity) [12]. Our LES-MHD simulation con-
firms the saturation of the dynamo threshold at large
Reynolds number already observed in constant force simu-
lations [12]. For the mean flow, we have detected two
windows of dynamo actions, operating at Pm< 1 and
Pm> 1: one, independent of Re, starting above RmMF

c 	
6 and centered at Rm � 10, with real Lyapunov (stationary
dynamo); a second, occurring at larger Rm, with complex
Lyapunov (oscillatory dynamo). One sees that Rmturb

c
varies across these two windows and always exceeds
RmMF

c . In the sequel, we show that the increase and satu-
ration of Rmturb

c is not due to a crossing between the two
dynamo modes, but to the influence of nonstationary large
scales over RmMF

c .
To make an easier connection between DNS and KS

simulations, we introduce a parameter that quantifies the
noise intensity, � � hu2i=h �u2i. This parameter depends on
3-2
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the noise amplitude, as well as its correlation time and
characteristic scale, and needs to be computed for each
stochastic simulation. It can also be computed in the direct
simulations and is found to depend on the Reynolds num-
ber, increasing from a value of 1 at low Reynolds number,
to about 3 at the largest available Reynolds number
[Fig. 2(a)]. Note that �� 1 is just the ratio of the kinetic
energy of fluctuations onto the kinetic energy of the mean
flow. In the sequel, the comparison between the KS and
DNS-MHD simulations will therefore be made using � as
the control parameter. Another interesting information can
be obtained from the energy spectrum of the velocity field,
as one averages over longer and longer time scales
[Fig. 2(b)]. One sees that during the first period of average
(typically, a few eddy-turnover time, i.e., about 5 to 10 s),
one mainly removes the fluctuations at largest scales, while
the remaining average mostly removes small scales (over
time scales of the order of 50 to 100 eddy-turnover times,
i.e., 300 s).

In the sequel, we explore the influence of both type of
fluctuations through the KS simulations, by considering
noise at large (kI � 1) and small scale (kI � 16), with
correlation time ranging from 0 to 50 s. Since the kine-
matic dynamo threshold is essentially constant for all
values of the Reynolds number we explored, we first focus
on the study of the case where the time-averaged field is
fixed as �u�Re � 6� and vary the noise amplitude, character-
istic scale, or correlation time, to explore their influence on
the dynamo threshold. An example of our exploration of
the parameter space is provided in Fig. 3, for different
kinds of noise and �u�Re � 6�. Note that by using our
external noise, we are able to produce noise intensities
comparable to experimental measurements (�
 10 at
Re
 106 for the von Kármán flow), and that are out of
range of DNS. For low correlation time or injection scale,
we are actually able to follow the deformation of the two
windows of dynamo action. One sees that a noise does not
destroy them, but rather distorts them. In the case where the
noise is at large scale (kI � 1), the windows are tilted
upwards. In the case of small-scale noise (kI � 16), the
tilt is downwards for the first window at any �c, and for the
FIG. 2. (a) Noise intensity � � hu2i=hu2i, as a function of the
Reynolds number in the DNS under the dynamo threshold.
(b) Energy spectrum of the velocity field in the DNS, at Re �
46, for different average period T: dotted line, T � 0; short
dashed line, T � 75 s; long dashed line, T � 150 s; solid line,
T � 300 s.
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second window at �c � 0. For finite correlation time, the
latter is bended upwards, in agreement with analytical
results at large Pm [16].

In the sequel, we focus on the lowest dynamo window,
the less computationally demanding. The influence of the
noise onto the first dynamo threshold can be summarized
by plotting the critical magnetic Reynolds numbers as a
function of the noise intensity [Fig. 4(a)]. Large-scale
(small-scale) noise tends to increase (decrease) the dynamo
threshold. For small noise intensities, the correction
Rmturb

c � RmMF
c is linear in �� 1, in agreement with the

perturbative theory [10]. Furthermore, one sees that for
small-scale noise, the decrease in the dynamo threshold is
almost independent of the noise correlation time �c, while
for the large-scale noise, the increase is proportional to �c
at small �c. At �c * 1 s—one-third of the mean eddy-
turnover time—all curves Rmc��� collapse onto the same
curve. We have further investigated this behavior to under-
stand its origin. Increasing � first increases the flow turbu-
lent viscosity vrms lint with respect to its mean-flow value
VrmsLint. This effect can be corrected by considering
Rm�c � RmcVrmsLint=vrms lint . Second, an increase of �
produces an increase of the fluctuations of kinetic energy,

quantified by �2 �

���������������������������
hu2i2 � hu2i2

q
=hu2i. This last effect is

more pronounced at kI � 1 than at kI � 16. It is amplified
through increasing noise correlation time. We thus rean-
alyzed our data by plotting Rm�c as a function of �2

[Fig. 4(b)]. All results tend to collapse onto a single curve,
independently of the noise injection scale and correlation
time. This curve tends to a constant equal to RmMF

c at low
�2. This means that the magnetic diffusivity needed to
achieve dynamo action in the mean flow is not affected
by spatial velocity fluctuations. This is achieved for small-
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FIG. 3. Parameter space for noise at Re � 6 for different noise
parameters: (a) �c � 0, kI � 1; (b) �c � 0:1 s, kI � 1;
(c) �c � 0, kI � 16; (d) �c � 0:1 s, kI � 16. �, no-dynamo
case; ��, undecided state; �, dynamo case. The solid lines are
zero-Lyapunov lines.
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FIG. 5. Comparison between DNS and KS simulations with
Re � 6 with kI � 1, �c � 1 s. Same symbol meaning as in
Fig. 1. Note the tiny dynamo window near Re � 6, Rm � 40.
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FIG. 4. Evolution of the dynamo threshold for KS simulations
with �u�Re � 6�. (a) Rmc as a function of � and (b) Rm�c as a
function of �2 for different noise parameters. k � 1: �, �c � 0;
�, �c � 0:1 s; �, �c � 1 s; ��, �c � 8 s; �, �c � 50 s. k � 16:
, �c � 0; �, �c � 0:1 s; �, �c � 50 s.
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scale noise, or large-scale noise with small correlation-time
scale. In contrast, the curve diverges for �2 of the order of
0.2, meaning that time fluctuations of the kinetic energy
superseding 20% of the total energy annihilate the dynamo.
To check that our results are not affected by the choice of �u,
we ran additional KS simulations with �u computed at Re �
25, 46, and 100 for large-scale noise with correlation time
�c � 1 for the level of noise reached by the DNS at that
Reynolds number. The obtained Rmc were found to be
within 10% (50%) the critical magnetic Reynolds numbers
obtained at Re � 6, for �c � 1 (�c � 8).

We now turn to detailed comparison of dynamo thresh-
olds obtained in KS simulation at kI � 1, for �c * 1 with
the DNS-MHD case. In Fig. 5, we compare the two pa-
rameter spaces. One clearly sees that the noise-tilted first
dynamo window coincides with the first mean-field dy-
namo window in the DNS-MHD, indicating that a large-
scale noise is probably responsible from the increase of
Rmturb

c with Re. Note that the noise intensity � saturates
past Re
 100 [Fig. 2(a)], thereby explaining the saturation
of Rmturb

c at large Re. A physical identification of this noise
can be performed by visual inspection of the turbulent
velocity field. One observes that the large-scale vortices
generated by the Taylor-Green forcing are not exactly sta-
tionary, but wander slightly with time. A similar large-
scale nonstationarity has been observed in the shear layer
of von Kármán flows [17,18], with intensity corresponding
to �
 10, and could thus be responsible for a significant
increase of the dynamo threshold with respect to kinematic
predictions.

Our work suggests that it might not be so easy to achieve
turbulent dynamos in unconstrained geometries, with
large-scale nonstationarity. In the experiments, a necessary
ingredient for dynamo action could therefore be a moni-
toring of the large scale, so as to keep them as stationary as
possible. In geo- and astrophysical flows, this role could be
played by the Coriolis force. Our work also indicates that a
well-chosen noise can be used in place of the actual
turbulent velocity fluctuations to compute the dynamo
threshold, at a much lower computational cost. In some
20450
sense, a kinematic-stochastic simulation can therefore be
seen as a turbulent model and might be useful in the astro-
or geophysical context.
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