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Cluster Size Distribution and Scaling for Spherical Particles and Red Blood Cells
in Pressure-Driven Flows at Small Reynolds Number
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The clustering characteristic of purely hydrodynamically interacting particles suspended in pressure-
driven flow in a circular cylinder is studied using direct numerical simulation based on the solution of the
lattice-Boltzmann equation. We find a universal scaling relation for the cluster size distribution in the
subcritical regime for all of the cases considered in this study. This scaling relation is independent of

particle shape and concentration.
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Investigation of the characteristics and size distribution
of particle clusters in suspension under hydrodynamic
interaction is important in understanding various phe-
nomena such as sol-gel transition, crystalline formation,
and red blood cell aggregation. It is important to study the
scaling relations for the cluster size distribution in order to
better predict and describe the flow behavior of the sus-
pension. Although, as far as we are aware, there is no
published scaling relation for cluster size distribution of
solid particles suspended in pressure-driven flows as pre-
sented in this Letter; there are other interesting cases
relevant to this study. For example, the rheology of weakly
attractive colloidal particles is shown to exhibit a surpris-
ing scaling behavior as the particle volume fraction or the
strength of the attractive interparticle interaction is varied
[1]. There is a critical threshold in volume fraction above
which the frequency-dependent linear viscoelastic moduli
and stress can be scaled onto universal master curves. In
another study, the cluster statistics and scaling behavior of
diffusion-controlled deposition of many particles in a line
of nucleation sites is studied with Monte Carlo simulations
[2]. It is found that the number of clusters with size s, that
is n(s) scales as s~ 7, where 7 is about 1.35.

These scaling behaviors suggest that the process of
migration and clustering may drive the system into a state
of self-organized criticality [3.4]. It is interesting to see if
the cluster size distribution in a suspension of solid parti-
cles under shear can be characterized with a ““universal”
scaling relation. Since it is difficult to measure the cluster
size distribution experimentally, direct numerical simula-
tion of solid particles suspended in liquid under shear
becomes an effective approach.

The focus of the present work is on the suspension and
clustering of solid particles in a viscous liquid under purely
hydrodynamic interactions in the absence of Brownian
motion; that is, the Péclet number is infinitely large.
There have been many excellent review articles explaining
microscopic and macroscopic behavior of suspensions and
cluster formation [5,6]. In this study, we present a general
scaling relation for the cluster size distribution of non-
deformable solid particles suspended in fully developed
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pressure-driven flow in a circular cylinder at equilibrium.
The system considered in this study represents a broad
class of applications in flow of suspensions.

Most of the previous studies of clustering in suspen-
sions either do not consider the hydrodynamic interaction
of particles or use a stochastic approach where the cluster-
ing is considered as a “birth-death” process, described
by a master equation or a Fokker-Planck type equation
[7,8]. We choose an alternative approach based on direct
numerical simulation of the particle motion and inter-
action, by considering the full hydrodynamic forces on
the particle and particle-particle interaction. In this ap-
proach, the lattice-Boltzmann equations for the fluid
phase are coupled with the Newtonian dynamics equations
for the solid particles [9]. The lattice-Boltzmann method
used in this study has been thoroughly explained and
verified previously [9—-11]. This method is enhanced [12]
by including the full lubrication forces between solid sur-
faces at link-to-link level when two particles are near
contact. The “link-to-link™ level calculation of the lu-
brication force is obtained by summation over each link.
This hybrid method, verified by comparing the simula-
tion results with previous theoretical investigation [13],
allows correct consideration of the hydrodynamic stresses
between two particles near contact when the separation
distance is a fraction of the lattice size and therefore much
smaller than the particle diameter. With the force and
torque on the solid particle correctly calculated, the motion
of the suspended particle is determined by solving the
Newtonian equation of motion. In this study, we are con-
sidering solid particles with infinitely large elastic modu-
lus where particle collision and clustering depend on the
normal and tangential lubrication forces and the sur-
rounding flow [6,14]. The mechanism of particle cluster
formation is similar to the cases considered by Brady and
Bossis [6], Nott and Brady [15], and others for inertialess
systems except in some cases here we include the effect of
particle and fluid inertia at small but nonzero Reynolds
number.

In this study, two shapes of neutrally buoyant solid
particles are considered. One is a rigid sphere and the other
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is a rigid particle in the shape of a red blood cell (RBC),
given below.

The computational domain is a circular cylinder with di-
ameter D and length L. Periodic boundary conditions are
applied in the axial direction at x = 0 and L such that par-
ticles leaving the domain at x = L reenter the domain at
x = 0. The flow is driven by a constant mean axial pressure
gradient, dP/dx. Since the particles are neutrally buoyant
and gravity is neglected, the relevant parameter is the
particle Reynolds number Re defined as Ud/v, where d is
the diameter of the sphere, v is the kinematic viscosity of
the fluid phase, and U is the characteristic velocity, defined
as the maximum velocity if there were no solid particles in
the domain, i.e., U= (D?/16vp)dP/dx, where p is the
fluid density. Except as indicated otherwise, in these simu-
lations we assume Stokes flow (i.e., Re < 1), that is neg-
ligible inertia. The cylinder Reynolds number Rep is de-
fined as UD/ v, where D is the diameter of the cylinder. In
the simulations presented here, Rep is in the range from 20
to 50. Therefore, the flow without the particles is a regular
Poiseuille pipe flow. There are a total number of N parti-
cles in the domain, where N varies from 100 to 1990, and
the volume concentration, ¢, varies from 7% to 19%.

The initial positions and velocities of the particles are set
randomly; however, the initial gap between any pair of
particles is larger than 0.5 lattice units. Under pressure-
driven flow, the fluid as well as the solid particles in the
circular cylinder move, and the relative position between
particles change. We assume the particles have a smooth
surface and, therefore, the particle-particle interaction is
governed by purely hydrodynamic forces [12]. In our
simulations, we do not use any artificial forces when
particles are near contact. Because of the singularity in
the lubrication force [13], there is always a very thin layer
of liquid in the gap between the solid particles near contact.
The criteria in this study for cluster formation is when the
gap between two particle surfaces is less than the minimum
gap, a.. We show further below that as long as a,. is small,
the results are independent of this parameter. The collec-
tion of particles that are in “‘contact’ (i.e., the gap is less
than a,) form a cluster, and the number of particles in one
cluster, s, is defined as the size of the cluster. The total
number of clusters with size s at time ¢, denoted as n(s, ),
rapidly reaches the equilibrium state after the initial tran-
sient period. At equilibrium state, the average number of
clusters, given by

1 0T

n(s) = lim = n(s, 1),

()= fim 7 3 a1
does not change with time. Denoting N, as the total num-
ber of clusters, the average size of the cluster, defined as
(s)=N/N. =3 sn(s)/>n(s), is then computed based
on the equilibrium cluster number. In order to see how the
cluster size varies in the initial transient, a time-dependent
average size of clusters, (s(¢)), can similarly be defined as
(s(0)) = > ssn(s, 1)/> ¢n(s, 1). A typical result for N = 270
from group 1, see Table I below, is shown in Fig. 1. Since

TABLE I. Set of parameters considered in each group of

simulations (all dimensions are in lattice units).

Group L D d a, Co
1 128 63 8.12 0.02 20%
2 128 63 7.92 0.05 20%
3 256 127 8.12 0.02 24%

the initial positions of the spheres are at least 0.5 lattice
units apart, at t = O there are only single particle “clus-
ters,” that is, (s(t = 0)) = 1, n(1,0) = N, and n(s,0) = 0
for s > 1. During the initial transient period—that is,
about the first 3500 time steps (nondimensional time
t/(d/U) about 10)—the average cluster size distribution
increases until it reaches equilibrium.

A transition in flow regime occurs at a critical concen-
tration, ¢y which is characterized by a fundamental change
in cluster size distribution. The number of single particle
“clusters” [i.e., n(1)] increases with concentration, reach-
ing a maximum value at the critical concentration. Beyond
the critical concentration, n(1) decreases with concentra-
tion. The post-critical state is characterized by a large size
cluster dominating the flow. In this study, we focus on the
cluster size distribution in the subcritical regime where ¢ <
co or the reduced volume concentration, @ = c/cy =
N/Ny, is between 0 and 1, where N, is the number of
particles at the critical concentration.

In order to explore the generality of the scaling relation
presented below, we consider three groups of parameters
for the spherical particles, as outlined in Table I. The
cluster size distribution for sphere volume concentrations
from 7% to 19% for all of the groups is shown in Fig. 2.
The results show that in general for any given size of the
cluster, n(s) increases with volume fraction. The values of
n(s) decrease rapidly as s increases, which means that the
formation of large clusters is a small probability event. The
simulation results converge slowly when n(s) < 1072, re-
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FIG. 1. The average cluster size vs time (¢ = 19%).
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FIG. 2. The cluster size distribution for volume concentration
varying from 7% to 19% in logarithm scale. For the definition for
the groups, see Table I.

sulting in some scatter when log[n(s)] < —2. However, for
n(s) between 107! to 103, over a four-decade variation in
n(s), the results obtained from our simulations converge
rapidly and show almost no scatter.

Although the cluster size distribution depends greatly on
the volume fraction, we have found that all the data points
presented in Fig. 2 can be scaled onto a universal curve
given by,

n(s)/ng = f(sp), (1
where p = 1 — a and
f(x) = 27 exp(—), (2)

as shown in Fig. 3. Here n is the normalization factor. By
definition, N = Y (sn(s), the normalization factor can be
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FIG. 3. The computational simulation results for reduced vol-
ume concentration, «, ranging from 0.35 to 0.95, are fit by one
unique scaling relation (2), shown here as the solid line.
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In purely shear flow, once a cluster forms, it moves and
rotates from compressive to extensional shear axis [6]. In
the cases considered here, since the rate of shear varies
from a maximum at the wall to zero at the center, a radial
concentration gradient exists due to shear [16,17]. In gen-
eral, the clusters tend to break in the higher shear region
and recombine near the center where shear is lower. These
clusters evolve permanently with time. Although at any
time after the initial transients, particles are captured or
released by the clusters, the overall cluster size distribution
remains in equilibrium. The competing forces leading to an
equilibrium cluster size distribution is a typical phenome-
non of self-organized criticality [3,4]. The resulting scaling
relation presented above follows the well-known finite-
size-scaling method [18], which has been successfully
used in stochastic systems [19-21]. When ¢ > ¢, how-
ever, a large cluster forms and dominates the flow. This
super cluster exists most of the time; however, it may break
into smaller clusters and then form shortly thereafter. In
this post-critical state when the volume concentration in-
creases, the total number of clusters decrease, while the
size of the large cluster increases rapidly. The existence of
a large cluster at high particle volume concentration in
three-dimensional flow inside a circular cylinder (about
28%) is consistent with the results reported by Brady and
Bossis [6] and Nott and Brady [15] for a monolayer of
particles in shear flow with high particle area concentration
of ~40% or volume concentration of ~27%.

To examine the generality of this scaling relation, the
cluster size distribution for rigid particles in the shape of
RBCs, as shown in Fig. 4, is also considered. The computa-
tional domain is a cylinder with 127 lattice units in diame-
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FIG. 4. The computational simulation results for different
RBC concentrations and slightly different Reynolds numbers.
Inset: RBC is a body of revolution, shaped like a disk.
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FIG. 5. The computational simulation results of Fig. 4 scaled
by Eq. (2), the solid line.

ter and 256 lattice units long. The diameter of the RBC is
d = 2r = 20 lattice units. The shape of RBC is defined by
the revolution of the following contour:

y/r=0.51 = (x/r)’[By + By (x/r)* + By(x/1)*]

for —r = x = r, about the y axis, where By, = 0.2, B| =
2.0, and B, = —1.123. The critical volume concentration
for this system is around ¢y = 14%. Results for volume
concentrations of 6.3% and 12.6% with negligible inertia
are shown in Fig. 4.

In lattice-Boltzmann method, the simulation can easily
be extended to suspension of particles with finite particle
inertia. The particle Reynolds number Re is defined the
same as for the sphere, except the length scale, d, is the
diameter of the RBC (see inset in Fig. 4). The data in Fig. 4,
represented by open circles, are results for particle
Reynolds number Re = 3.23 and volume concentration
¢ = 12.6%. This case corresponds to a flow Reynolds
number, Re;, = UD/v = 20.5, based on the fluid viscos-
ity v, pipe diameter D, and characteristic velocity U de-
fined above. These results show that the particle inertia in
the range considered here does not influence the cluster
size distribution. Similar to the case of spherical particles,
the results for RBC scales onto the same master curve
representing the same scaling relation (2), as shown in
Fig. 5.

Because the leading term of n is of the order N p°/~e” in
the segment p € (0, 1), Eq. (3) can be written as ny =
Np>2ePRy(p), where [Ry(p)]™" =3 s ¥ exp[—(s -
1)p]. This function can be approximated by a linear func-
tion R,(p) =1 (1 + p). Then the normalization factor can

5/2

be approximated by ny =~ I N(1 + p)p*/2e”, which leads to
n(1)=N(1 — a/2) =Nya(l — a/2). In particular, at small
concentration, & — 0, we have n(1) = N, which means
that almost every particle is separated and no clusters

with § = 2 exist in the system; when @ — 1, at the critical
concentration, n(1) reaches its maximum value N,/2; that
is, in this limit about half of the particles in the system
remain dissociated. Furthermore, R,(p) tends to a constant
when a — 1 (p — 0), and the cluster size, n(s), becomes
proportional to s~5/2. This means that the critical concen-
tration is characterized by the simple power relation of the
cluster size distribution, without exponential decay. These
results are also confirmed in our numerical simulation.

In summary, we show that in a pressure-driven flow of
suspension inside a circular cylinder, the cluster size dis-
tribution may follow a universal scaling relation which
appears to be independent of particle shape and concen-
tration. The cluster size distribution seems to be insensitive
to inertia up to particle Reynolds number Re = 3. There
exists a critical concentration, where n(1) reaches its maxi-
mum value, and the cluster size distribution becomes a
simple power relation. We also show that in this limit about
half of the particles remain freely suspended. These results
are consistent with the general concept of self-organized
criticality [3,4].
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