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Direct Numerical Simulation of Downshift and Inverse Cascade for Water Wave Turbulence
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By means of direct numerical simulations (DNS) based on the integrodifferential Zakharov equation,
we study the long-term evolution of nonlinear random water wave fields. For the first time, formation of
powerlike Kolmogorov-type spectra corresponding to weak-turbulent inverse cascade is demonstrated by
DNS, and the evolution in time of the resulting spectra is quantitatively investigated. The predictions of
the statistical theory for water waves, both qualitative (formation of the direct and inverse cascades, self-
similar behavior) and quantitative (the spectra exponents, specific shape of self-similar functions, the rate
of time evolution) are found to be in good agreement with the DNS results, except for the initial part of the
evolution, where the established statistical theory is not applicable yet and the evolution has a much faster
time scale.
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Introduction.—Wind waves on the ocean surface, due to
their importance for navigation and essential role in
weather forecasting, represent the most studied example
of wave (or weak) turbulence. The term is commonly used
to designate random motion of continuous weakly non-
linear dispersive wave fields in various physical contexts,
including solid state physics, plasma physics and geophysi-
cal hydrodynamics (see, e.g., Ref. [1]). The affinity of
wave turbulence with the classical hydrodynamic turbu-
lence is more than merely semantic. Its key feature, dis-
covered by Zakharov and Filonenko [2], is the existence of
the Kolmogorov-type cascades of energy and other inte-
grals of motion [1]. On the other hand, in contrast to the
classical turbulence, there is a well-established general
formalism for treating weakly nonlinear wave fields that
exploits smallness of nonlinearity and a number of subtle
assumptions about quasi-Gaussianity of a statistically ho-
mogeneous wave field. This approach, pioneered by Peierls
[3], leads to a closed equation for the second statistical
momenta of the field which we will refer to as the kinetic
equation (KE). Although the theory based upon the KE
was used in many different applications (e.g., Ref. [1]), the
basic question—to what extent the theory corresponds to
actual behavior of physical systems remains open, and the
range of its validity, has not been established. Thus, an
independent corroboration, which would be able to estab-
lish the range of validity of the theory, is essential. This
Letter aims at this gap.

The most obvious way to validate the theory, and to get
understanding of the statistical evolution when the theory
is not applicable, is the direct numerical simulation (DNS)
of statistical ensembles of random wave fields. Although
this task seems to be straightforward, there are fundamen-
tal difficulties in applying DNS to this problem. First, the
hydrodynamic equations should be integrated for a very
large number of modes over quite large time intervals,
much larger than those required in simulations of classical
turbulence. The necessary times are at least O�"�4� of
characteristic wave periods for the media with prevailing
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quartet interaction, as is the case for water waves. Here ",
the parameter that characterizes nonlinearity, is small by
the definition of wave turbulence. Second, the KE de-
scribes continuous wave fields, and is essentially based
on the existence of a continuum of waves involved in
both resonant and nonresonant interactions. In this context
it is not a priori clear how to perform the unavoidable
discretization of a continuous wave field. Third, although
there exists a large variety of algorithms developed to
simulate evolution of water waves, none of them has
proved to be particularly well suited to the challenge.
Nevertheless, many different groups employed some mod-
ifications of the existing algorithms, although with a lim-
ited success [4–8].

The most robust predictions of the KE for dispersive
waves with prohibited triad interactions are: (i) the exis-
tence of Kolmogorov-type cascades: the ‘‘direct’’ energy
cascade towards small scales, which in terms of energy
frequency spectra E�!� manifests itself as a powerlike
spectrum (in the water wave context E�!� �!�4), and
the ‘‘inverse’’ wave action cascade towards large scales,
which also gives rise to powerlike spectrum with a differ-
ent exponent [for water waves, E�!� �!�11=3]; (ii) the
scaling of energy fluxes and evolution times as �"6 and
�"�4 respectively; (iii) solutions of the KE tend to become
self-similar at large times, for a wide range of generation
and dissipation conditions [9].

Based upon coarse mesh simulations, a preliminary type
observation of the existence of the direct cascade for water
waves was reported in Ref. [4]. In Ref. [5] the very initial
stage of wave field evolution was simulated, and an agree-
ment in energy fluxes between the DNS and KE was found.
Recently the field evolution was simulated over O�103�
characteristic wave periods [6–8]. These works are based
on the amplitude expansions of the original primitive
hydrodynamic equations for the free-surface flow and the
subsequent integration of the resulting equations using
spectral methods, employing efficient realizations of fast
Fourier transform. It was shown that there is indeed a direct
1-1 © 2006 The American Physical Society
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cascade resulting in the formation of stationary powerlike
spectra that are in a reasonable agreement with the pre-
dictions of the KE. However, there were no attempts to
perform a detailed comparison of the evolution processes
obtained with the KE and the DNS. In particular, the
evolution time scales were not discussed. We also note
that the !�4 energy spectrum, in itself, is not a clinching
argument in support of the theory, since this spectrum
could be obtained on the basis of a simple dimensional
analysis without resorting to any theoretical model [10,11].
A more sophisticated dimensional analysis within the KE
paradigm yields the exponents of both direct and inverse
cascades [12]. The main counterintuitive feature of wave
turbulence, formation of the inverse cascade, has not been
confirmed so far by DNS.

The common origin of the difficulties lies in the fact that
the commonly employed fast techniques require the dis-
cretization of a wave field to a regular grid of Fourier
harmonics. Regular grids are known to bring undesirable
artifacts in behavior of wave turbulence [13]. In our con-
text, it is especially important that the number of both exact
and approximate resonances in a regular grid of harmonics
is very limited, a very large grid being necessary for a
successful modelling of weak turbulence. Moreover, a
regular grid is, in fact, an unnatural representation of a
continuous wave field with waves of very different scales.
Even if the grid is sufficiently dense for short waves to
form a rich enough system of resonances in the high-
frequency part of the spectrum, the lack of resonances in
the low-frequency part is inevitable, unless very substantial
computational resources are used, such resources being
clearly beyond the current capabilities.

In this Letter, we study formation and evolution of the
inverse cascade employing a new numerical approach to
the DNS of statistical ensembles of water waves, based on
the integrodifferential Zakharov equations. This approach
is not restricted to regular grids of harmonics. Instead, the
wave field is represented as an ensemble of a large
[O�103–104�] number of finite-size wave packets with
random phases, linked by a dense grid of approximate
resonances, which represent the interactions of individual
harmonics within wave packets. We simulate the evolution
of an initially sharp impulse in the wave field in the
presence of small dissipation at large wave numbers, as
well as the evolution of wave turbulence excited by exter-
nal source in higher-frequency part of the spectrum.
Formation of powerlike spectra corresponding to the in-
verse cascades is demonstrated for the first time by DNS.
Time evolution is shown to be generally in accordance with
the predictions based upon the KE, in particular, the nu-
merical solutions have a well-pronounced self-similar be-
havior. The area of sharp discrepancy between the KE and
DNS is the initial stage of evolution: as it was suggested in
Ref. [14], wave fields initially evolve on ‘‘dynamic’’
O�"�2� rather than the O�"�4� ‘‘kinetic’’ time scale.

Theoretical background.—Governing equations for po-
tential gravity waves on the surface of ideal incompressible
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fluid of infinite depth have the Hamiltonian form
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and the Hamiltonian H is the total energy of the system,
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Here, integration with respect to x over the entire horizon-
tal plane is implied; z � ��x; t� specifies the surface, and
’�x; z; t� is the velocity potential, with  �x; t� �
’�x; ��x; t�; t� being the potential at the surface.

Provided that wave slopes are O�"� small, the
Hamiltonian in Fourier space can be expanded in powers
of ". For gravity waves, triplet resonant interactions are not
permitted, and the appropriate canonical transformation
allows one to get rid of the cubic terms in the
Hamiltonian, leading to the Zakharov equation [15]
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Here, b�k� is a canonical complex variable, !�k� �
�gk�1=2 is the linear dispersion relation, i��k� is the small
imaginary correction to frequency due to forcing or dis-
sipation, g is normalized to unity, k � jkj, integration in
(1) is performed over the entire k plane. The compact
notation used designates the arguments by indices, e.g.,
T0123 � T�k;k1;k2;k3�; �0�1�2�3 � ��k� k1 � k2 �
k3�; asterisk means complex conjugation; t is time. All
the details of the lengthy procedure of derivation of (1), as
well as the expression for the kernel T can be found in
Ref. [15]. The canonical variable b�k� is linked to the
Fourier-transformed primitive physical variables ’�k; t�
and ��k; t� through an integral-power series [15]
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The statistical description of wave fields is usually sought
in terms of correlation functions of b�k; t�. The classical
derivation (see, e.g., Ref. [1]) uses (1) as the starting point
and leads to the equation
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where n0 is the second-order correlator, hb�0b1i � n0�0�1,
angular brackets mean ensemble averaging, and f0123 �
n2n3�n0 � n1� � n0n1�n2 � n3�. Equation (2) describes
the evolution of the wave statistical ensemble and in the
context of wind waves is often referred to as the
Hasselmann equation; we use the term KE to emphasize
its universality and relevance for all dispersive wave sys-
1-2
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FIG. 1. Decay of an initial impulse without forcing. DNS wave
action spectra for different times, measured in periods of the
central harmonic of the impulse and shown in the box.
Theoretical powerlike wave action spectrum k�4 is shown.
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FIG. 2. Self-similar function U���, � � !2t2=11, extracted
from wave number spectra at different times, shown in the
box. Theoretical powerlike spectrum k�4 is shown.
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tems with prohibited triads. For its verification, we will
focus on comparing the DNS and self-similar solutions to
(2) discussed in Ref. [9].

Numerical algorithm.—The most natural way to study
validity of (2) by means of DNS is to simulate numerically
(1) from which it is derived. A new algorithm was pro-
posed and successfully applied in Refs. [14,16] to the study
of the evolution of relatively simple wave systems. In order
to use it for DNS, it is necessary to work out a procedure of
discretization of a continuous wave field, representing it in
terms of a large number of harmonics coupled by exactly
and approximately resonant interactions. We note that
exact resonances do not play any special role in the field
evolution [14].

Meanwhile, for a successful modelling of wave turbu-
lence, it is essential to represent the continuous nature of
resonant interactions within a wave field. For this purpose,
we build a grid consisting of a moderate number
[O�103–104�] of wave packets, which comprise a much
larger number [O�107–108�] of individual harmonics,
coupled through exact and approximate resonant interac-
tions. A wave packet has the amplitude of the envelope of
harmonics it comprises and a randomly chosen initial
phase. Then, Zakharov equations in the form (1) are written
for all wave packets, with all resonant interactions of the
individual harmonics taken into account. Employing the
smoothness of interaction coefficients, these interactions,
linking individual harmonics of wave packets, are included
into the equations for their central harmonics, taking into
account the relevant phase correction terms. Although this
procedure does not yet have a mathematically rigorous
justification, the results of the simulations were thoroughly
verified to be independent of the parameters of the method.
The resulting system of Eq. (1) is solved numerically with
the fourth-order Runge-Kutta method. All computations
were performed on single-processor workstations.

Results.—In our numerical experiments, we study the
evolution of initially isotropic spectra. We have chosen a
grid of circular shape with regular spacing between wave
packets, k � 	��m� 1=2�i	 ��n� 1=2�j, where � �
30, m; n � 0; 1; . . . , and i, j are unit vectors in Fourier
space, under the condition that jkj< 1000. We note that
this problem does not have a length scale.

Let us first consider a classical test case problem of
decay of a free localized impulse. To this end we prescribe
an initially isotropic spectrum centered around a high wave
number jk0j � 600, so that initially all the energy is in the
high wave number part of the spectrum. Small dissipation
at high wave numbers only, jkj> 784, is inserted into (1),
with � � �2:5� 10�12A3, where A is the average ampli-
tude in the wave number band 729< jkj< 784, adjacent
to the dissipation domain. Time t is measured in periods of
jk0j. Long-term evolution of the wave number spectrum,
up to t � 105 periods, is shown in Fig. 1. Formation of the
powerlike spectrum, corresponding to the flux of wave
action to lower frequencies and very close to the theoretical
power k�4, is demonstrated.
20450
According to Ref. [9], the KE solutions for localized
initial conditions without forcing tend to a self-similar
asymptotics, n � at4=11U���, where � � !2t2=11. To dem-
onstrate the self-similarity of the spectra shown in Fig. 1,
function U���, extracted from the spectra at different
times, is shown in Fig. 2. The self-similar function is
very close to that obtained in Ref. [9], except for the
somewhat less steep front. The initial evolution of the
spectrum (at t < 150) does not have this self-similar be-
havior. A comparison with the evolution of more intense
initial impulses shows that at relatively small times the
time scale of the evolution is quadratic with respect to
nonlinearity, not of fourth power as predicted by the KE.
The existence of a substantial initial evolution occurring on
1-3
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FIG. 3. Wave action spectra with forcing, obtained by DNS,
for different times (shown in the box), measured in periods of the
harmonic at the center of forcing. Theoretical powerlike spec-
trum k�23=6 is shown by solid line.
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a much faster time scale supports the earlier findings
obtained for model problems [14].

As a more realistic example, consider another classical
test case, that of forced turbulence, isotropically excited by
external force at higher wave number part of the spectrum.
We take the initial spectrum as a low-intensity white noise,
and insert damping of small scales with � � �0:001, for
jkj> 784 as before, and weak pumping, with � � 0:001,
for all 576< jkj< 625. The long-term evolution of the
spectrum, with averaging over 14 realizations, is shown in
Fig. 3. Again, powerlike spectrum corresponding to inverse
cascade is formed, and the evolution obtained with DNS is
again self-similar, in accordance with the results of Ref. [9]
for the KE. In Fig. 4, we show that the rate of downshift of
the spectral peak frequency is close to the theoretical rate
t�3=11 [9]. The results were tested to be robust with respect
of the choice of the grid, the number of harmonics, and
other parameters of the numerical method.

Conclusions.—In this Letter, the new numerical ap-
proach has allowed us to trace with DNS the long-term
evolution of weak turbulence of surface gravity waves.
This, for the first time, has enabled us to check all the
main features of wave turbulence predicted by the statisti-
cal theory: formation of the powerlike spectra correspond-
ing to both the direct and inverse cascades, and the self-
similar character of solutions. Thus, in the first approxi-
mation, we have verified the KE and justified its use in
numerous applications. The only area of a major discrep-
ancy identified so far is the initial [roughly O�"�3� wave
periods] stage of field evolution: spectra evolve on faster
O�"�2� time scale, rather thanO�"�4� predicted by the KE,
which is consistent with the recent findings on the role of
approximately resonant interactions [14,17]. This observa-
tion has far reaching implications and, therefore, requires a
20450
special study. A more extensive study is also needed to
identify more subtle discrepancies and the underlying rea-
sons. The results and conclusions reported in this Letter are
of a general character and are applicable to any generic
weakly nonlinear dispersive wave field with prohibited
triad interactions.
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