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Anomalous large thermal conductivity has been observed numerically and experimentally in one- and
two-dimensional systems. There is an open debate about the role of conservation of momentum. We
introduce a model whose thermal conductivity diverges in dimensions 1 and 2 if momentum is conserved,
while it remains finite in dimension d � 3. We consider a system of harmonic oscillators perturbed by a
nonlinear stochastic dynamics conserving momentum and energy. We compute explicitly the time
correlation function of the energy current CJ�t�, and we find that it behaves, for large time, like t�d=2

in the unpinned cases, and like t�d=2�1 when an on-site harmonic potential is present. This result clarifies
the role of conservation of momentum in the anomalous thermal conductivity in low dimensions.
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When a small gradient of temperature rT is applied to a
material, we expect that, in the steady state, the heat
current satisfies Fourier’s law,

hJi � ��rT;

where � is the conductivity of the material. There has been
interest in the question of validity of Fourier’s law for low
dimensional systems (d � 2), where standard arguments
based on linear response break down (cf. [1,2] for a review
on the subject). Anomalous large conductivity is observed
experimentally in carbon nanotubes and numerically in
Fermi-Pasta-Ulam (FPU) systems without pinning (on-
site potential), where numerical evidence shows a conduc-
tivity diverging like N�, with �< 1 in dimension 1, and
like logN in dimension 2 (cf. [2], and references therein). If
some nonlinearity is present in the interaction, finite con-
ductivity is observed numerically in all pinned cases, and it
is expected in all three-dimensional cases [1,2], as long as
some nonlinearity is present in the interaction. Con-
sequently it has been suggested that conservation of mo-
mentum is an important ingredient for the anomalous con-
ductivity in low dimension [3].

In insulating crystals heat is transported by lattice vibra-
tions, and since the pioneering work of Debye, systems of
coupled anharmonic oscillators have been used as micro-
scopic models for heat conduction. Nonlinearity is ex-
tremely important. In fact, in the linear case the average
energy current hJi is independent of the length N of the
system; i.e., the conductivity �N diverges like N [4]. In
fact, in the harmonic crystal the normal modes of the
vibrations (phonons) do not interact and follow ballistic
motion. A finite asymptotic conductivity instead should
result eventually by the diffusive behavior of phonons due
to phonon-phonon interaction caused by anharmonicity.
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Since conductivity in nonlinear systems is difficult to
compute or estimate analytically, it is natural to model the
nonlinearities by stochastic perturbations of the linear
dynamics. In some sense these stochastic perturbations
simulate (qualitatively) the long time (chaotic) effect of
the deterministic nonlinear model.

We study in this Letter a stochastic model where con-
ductivity can be explicitly computed, and diverges in di-
mension 1 and 2 when momentum is conserved, while it
remains finite in dimension 3. So this is the only explicitly
solvable model that has a behavior qualitatively consistent
with numerical simulations.

We consider a system of harmonic (linear) coupled
oscillators where the Hamiltonian dynamics are perturbed
by a random exchange of momentum between nearest
neighbor atoms. The random exchange of momentum con-
serves total momentum and total energy. We construct this
noise with a diffusion on the surface of constant kinetic
energy and momentum. Because of the conservation laws,
this noise introduces a certain nonlinearity in the model.

We compute explicitly the time correlation function at
equilibrium of the energy currents CJ�t� [cf. Eq. (12)], and
we find that, as t��1, CJ�t� � t�d=2 if the system is
unpinned, while CJ�t� � t�d=2�1 if an on-site potential is
present. Conductivity, defined by the Green-Kubo formula,
is then finite only in dimension d � 3 or for the pinned
system. This indicates a divergence of the conductivity of
the finite system �N as N1=2 in the unpinned one-
dimensional case, and as logN in the unpinned two-
dimensional case.

Other explicitly solvable models have been proposed
before as perturbation of the harmonic chain (in [5,6]
only the number of particles is conserved, and in [7] only
energy and the number of particles are conserved). In all
these models, conductivity is always finite.
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In order to compute the conductivity by the Green-Kubo
formula, we consider the dynamics of the closed system of
length N with periodic boundary conditions. The Hamil-
tonian is given by

H N �
1

2

X
x
	p2

x � qx 
 ��I � ���qx�:

The atoms are labeled by x 2 TdN , the d-dimensional dis-
crete torus of length N. We denote with r and �, respec-
tively, the discrete gradient and the discrete Laplacian on
TdN . fqxg are the displacements of the atoms from their
equilibrium positions. The parameter �> 0 is the strength
of the interparticles springs, and � � 0 is the strength of
the pinning (on-site potential).

We consider stochastic dynamics where the probability
density distribution on the phase space at time t, denoted
by P�t;q;p�, evolves following the Fokker-Planck equa-
tion (cf. [8]):

@P
@t
� ��A� �S�P � L�P:

Here L � A� �S is the generator of the process, L� is the
adjoint operator, and A is the usual Hamiltonian vector
field

A �
X

x
fpx 
 @qx

� 	��I � ���qx� 
 @px
g;

while S is the generator of the stochastic perturbation and
� > 0 is a positive parameter that regulates its strength.
The operator S acts only on the momentums fpxg and
generates a diffusion on the surface of constant kinetic
energy and constant momentum. This is defined as follows.
For every nearest neighbor atoms x and z, consider the
�d� 1�-dimensional surface of constant kinetic energy and
momentum

S e;p � f�px;pz� 2 R2d: p2
x � p2

z � 2e; px � pz � pg:

The following vector fields are tangent to Se;p:

Xi;jx;z � �p
j
z � p

j
x��@piz � @pix� � �p

i
z � pix��@pjz � @pjx�;

so
Pd
i;j�1�X

i;j
x;z�

2 generates a diffusion on Se;p. In d � 2 we
define

S � 1
2�d�1�

P
x

Pd
i;j;k�X

i;j
x;x�ek�

2
;

where e1; . . . ; ed is the canonical basis of Zd. Observe that
this noise conserves the total momentum

P
xpx and energy

H N; i.e.,

S
X

x
px � 0; SH N � 0:

In dimension 1, in order to conserve total momentum
and total kinetic energy, we have to consider a random
exchange of momentum between three consecutive atoms,
and we define S � 1

6

P
x2T1

N
�Yx�2, where
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Yx � �px � px�1�@px�1
� �px�1 � px�1�@px

� �px�1 � px�@px�1
;

which is vector field tangent to the surface of constant
energy and momentum of the three particles involved.

These dynamics can also be written in terms of the
solutions of the stochastic differential equations:

dpx � ���I ���qxdt� 2��pxdt�
����
�
p

dnx�t�; (1)

where of course _qx � px and nx�t� are defined by the Ito
stochastic integrals

n x�t� �
1

2
������������
d� 1
p

X
ky�xk�1

Xd
i;j

Z t

0
�Xi;jx;ypx��s�dw

i;j
x;y�s�:

Here wi;jx;y�t� � wi;jy;x�t� are independent standard Wiener
processes. In d � 1 the expression is similar with the
term 2��px replaced by ��=6���4px � px�1 � px�1�.

Defining the energy of the atom x as

ex �
1

2
p2

x �
�
4

X
y:jy�xj�1

�qy � qx�
2 �

�
2

q2
x;

the energy conservation law can be read locally as

ex�t� � ex�0� �
Xd
k�1

	Jx�ek;x�t� � Jx;x�ek�t��;

where Jx;x�ek�t� is the total energy current between x and
x� ek up to time t. This can be written as

Jx;x�ek�t� �
Z t

0
jx;x�ek�s�ds�Mx;x�ek�t�: (2)

In the above, Mx;x�ek�t� is the Ito stochastic integral de-
fined by

Mx;x�ek�t� �
������������
�

d� 1

r Xd
i;j

Z t

0
�Xi;jx;x�ekex��s�dw

i;j
x;y�s�:

The instantaneous energy currents jx;x�ek satisfy the equa-
tion

Lex �
Xd
k�1

�jx�ek;x � jx;x�ek�

and can be written as

jx;x�ek � jax;x�ek � �j
s
x;x�ek : (3)

The first term in (3) is the Hamiltonian contribution to the
energy current

jax;x�ek � �
�
2
�qx�ek � qx� 
 �px�ek � px�; (4)

while the noise contribution in d � 2 is

�jsx;x�ek � ��rekp
2
x (5)
3-2



PRL 96, 204303 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
26 MAY 2006
and in d � 1 is

�jsx;x�1 � ��r’�px�1; px; px�1�;

’�px�1; px; px�1� �
1
6	p

2
x�1 � 4p2

x � p
2
x�1 � px�1px�1

� 2px�1px � 2pxpx�1�:

Consider the dynamics of the closed system on TdN in
microcanonical equilibrium. The microcanonical distribu-
tion is usually defined as the uniform measure on the
energy surface H � Nde, for a given e > 0. Our dynam-
ics conserve also �

P
px�

2 � ��
P

qx�
2. Notice that the

dynamics is invariant under the change of coordinates
p0x � px �

P
ypy and q0x � qx �

P
yqy . Consequently,

without any loss of generality, we can fix
P

px � 0 andP
qx � 0 in the microcanonical measure.
Let us define Je1

�
P

xjx;x�e1
�
P

xj
a
x;x�e1

. We are
interested in computing the correlation function:
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C1;1�t� � lim
N!1

1

Nd E�Je1
�t�Je1

�0��; (6)

where E is the expectation starting with the microcanonical
distribution defined above. By explicit calculation we can
solve the equation

��� L��1Je1
� �

�
�

X
x;y
g�;N�x� y�px 
 qy ; (7)

where g�;N�x� is the solution of the equation

2�
�
g�;N�x��4�g�;N�x�� 	��x�e1����x�e1�� (8)

on TNd for d � 2, while in one dimension it solves
2�
�
g�;N�x� �

1

3
�	4g�;N�x� � g�;N�x� 1� � g�;N�x� 1�� � 	��x� 1� � ��x� 1��: (9)
Consequently, for � > 0, we can write the Laplace trans-
form of C1;1�t� as

Z 1
0
e��tC1;1�t�dt � lim

N!1
hja0;e1

��� L��1Je1
iN; (10)

where h
 
 
iN denotes the expectation with respect to the
microcanonical measure.

By substituting (7) in (10) and using equivalence of
ensembles estimates (see [8] for details), we have
Z 1

0
e��tC1;1�t�dt

�
�2e2

2d�

X
z
g��z�	��0; z� e1� � ��0; z� e1��; (11)

where � is the kernel of the operator ��I � ����1 on Zd,
while g� is the solution of Eq. (8) in Zd or Eq. (9) in Z. We
compute explicitly (11) and invert the Laplace transform
obtaining

C1;1�t� �
e2

4�2d

Z
	0;1�d
�@k1!�k��2e�t� �k�dk; (12)

where !�k� � 	�� 4�
Pd
j�1 sin2��kj��1=2 is the disper-

sion relation of the system, and

 �k� �
�

8
Pd
j�1 sin2��kj� if d � 2;

4=3sin2��k�	1� 2cos2��k�� if d � 1:
(13)

Since around k � 0 we have  �k� � k2 and �@k1!�k��2 �
��k1�2��� �2k2��1, we have the following asymptotic
behavior:

C1;1�t� �t!1

�
t�d=2 if � � 0;
t�d=2�1 if � > 0:

(14)
By the Green-Kubo formula [9], the conductivity in the
direction e1 is given by

�1;1 � lim
t!1

1

2e2t
lim
N!1

X
x
E�Jx;x�e1

�t�J0;e1
�t��: (15)

By explicit calculation one can show (see [8] for details)

�1;1 �
�
d
�

1

2e2

Z 1
0
C1;1�t�dt

�
�
d
�

1

8�2d�

Z
	0;1�d

�@k1!�k��2

 �k�
dk: (16)

By (14), if d � 3 or if � > 0, the integral on the right-hand
side of (16) is finite.

If � � 0 and d � 2, by (14) the time integral in (16)
diverges and conductivity is infinite. Following Ref. [2]
(p. 46), one can estimate the dependence of the conductiv-
ity of the finite open system of length N with thermic baths
at the boundary imposing a temperature gradient, by re-
stricting the time integral in (16) to times smaller than the
‘‘transit time’’ N=vs, where vs is the sound velocity of the
lattice defined as vs � limk!0@k1!�k� � 1. This gives a
finite size conductivity �N diverging like N1=2 in dimen-
sion 1, and like logN in dimension 2.

Discussion.—The exact results presented in this Letter
concerning the stochastic model we introduced give some
indications about the role of conservation of momentum
and of confinement (pinning) in heat conduction for the
nonlinear deterministic Hamiltonian case. In fact, the de-
cay of the energy current correlations and consequently the
behavior of the conductivity that we proved in our stochas-
tic model are (qualitatively) the same as those indicated by
numerical simulation for the deterministic nonlinear FPU
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models. Furthermore, a recent paper [10] on the one-
dimensional unpinned purely quartic FPU model suggests
the same decay of the time correlations of energy current as
in our stochastic model.

In the one-dimensional case we can give the following
euristic explanation of the effect of the noise in these
harmonic systems. In deterministic harmonic systems the
energy of each mode is conserved, in both pinned or
unpinned chain; so if modes are created by initial or
boundary conditions, they cannot interact and they move
ballistically. This causes ballistic transport and diverging
conductivity, in both cases (cf. [4,11]). The effect of the
energy-momentum conservative noise we have introduced
is to scatter modes randomly with rate proportional to k2,
for small wave number k. The velocity of the k mode is
given by the gradient of the dispersion function r!�k�. In
the unpinned chain, r!�k� � 1 for small k, so small wave
number modes have little probability to be scattered, and
their movement results in a ballistic contribution to energy
transport, while modes with large k scatter fast and con-
sequently they diffuse. Properly averaging over all modes,
one obtains a current proportional to N�1=2, i.e., a con-
ductivity diverging like N1=2. In the pinned chain, small
wave number modes move very slowly [r!�k� � k], so
there is a high probability they will be scattered and then
diffuse while they cross the system. Consequently, in this
case, conductivity is finite.

In [7] we considered the unpinned one-dimensional
harmonic chain with noise that conserves only energy,
and proved that conductivity is finite in any dimension.
In this last case, all modes are scattered with a constant rate
(independent of k).

In the nonlinear FPU type of interaction, a behavior
�N � N

�, with 0<�< 1, is observed numerically. But
numerical simulations are not conclusive about the value of
� and there is an intense debate in the literature on this
value (cf. [2]). As suggested recently by Livi [12], in one-
dimensional systems the value of � may depend on the
specific nonlinearity of the interaction (unlike the logarith-
mic behavior of the two-dimensional systems). The non-
linearity creates some scattering of the long-wave modes,
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which results in a breaking of the ballistic transport and in a
superdiffusive behavior of these modes. An extreme case is
given by the one-dimensional coupled-rotors model, which
is an example of a nonlinear chain that conserves momen-
tum and has finite conductivity [13]. In this example,
rotobreathers (isolated rotors with high kinetic energy
that turn very fast) scatter waves that try to pass through
them (cf. [14]).
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