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Identification and Distance Measures of Measurement Apparatus
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We propose simple schemes that can perfectly identify projective measurement apparatuses secretly
chosen from a finite set. Entanglement is used in these schemes both to make possible the perfect
identification and to improve the efficiency significantly. Based on these results, a brief discussion on the
problem of how to appropriately define distance measures of measurements is also provided.
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Identification of physical objects, including both quan-
tum states and quantum operations, has been an important
subject of quantum information theory. State identification
is extensively studied because it is found to be closely
related to the fundamental feature of nonorthogonality of
quantum states. In particular, perfect identification is im-
possible for nonorthogonal states unless the number of
copies of the unknown states is infinite [1]. Surprisingly,
things get quite different when we identify operations: it is
always possible to completely tell apart any two different
unitary operations by only a finite number of uses of the
unknown devices [2,3]. In this Letter, we will show that
projective measurements, the other most fundamental ele-
ment of quantum mechanics, can also be distinguished
with certainty despite their uncertain nature.

Most previous work [2,4–8] reduces the problem of
operation identification to that of state identification. We
will take a more direct strategy in measurement identifica-
tion. Namely, instead of designing a new measurement as
in both state identification and unitary identification, we
make a clever use of the apparatus to be identified itself.
The idea can be best illustrated by the following simple
example. Suppose the observable to be identified is either
�z or�x, the Pauli matrices. The identification can be done
by preparing �j00i � j11i�=

���
2
p

and measuring both qubits
with the unknown apparatus. It is easy to see that if the two
results coincide, the apparatus is �z; otherwise it is �x. In
this example, the measurement apparatuses have proven
their identities ‘‘on their own’’ without the help of any
extra measurements and we will see that all measurements
can be identified in this fashion.

Our next example employs the n-qubit W state to wit-
ness the identity of an unknown observable which is
known to be either S � �z or T � j 0ih 0j � j 1ih 1j,
where j 0i � aj0i � bj1i, j 1i � bj0i � aj1i and a ����������������������
�n� 1�=n

p
, b � 1=

���
n
p

. As in the previous example, we
measure all the n qubits with the unknown observable.
Simple calculation shows that only one of the n outcomes
is �1 if and only if the unknown device is S. Thus
identification is done by simply counting the number of
�1’s in the outcomes. In this example, measurements
with the unknown apparatus are carried out exactly n
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times; we will see later that a more efficient method exists.
In fact, we will utilize the famous multiparticle entangled
Greenberger-Horne-Zeilinger (GHZ) state [9], to achieve
optimal identification of single-qubit observables. Entan-
glement is thus as beneficial in improving distinguishabil-
ity of measurements as it has been in varieties of other
known applications [3,10–12].

More generally, the apparatus to be identified would be
either M �

P
mmPm or N �

P
mmQm, where Pm, Qm are

projectors of the Hilbert space H . We will focus on the
problem of distinguishing two measurements; the general
case can be dealt with in a similar way. Without loss of
generality, M and N are assumed to have the same set of
possible outcomes. Successful identification for this gen-
eral problem requires the help of unitary operations. We
demonstrate the idea in an example below, and will extend
it later to prove the general result. In this example,M andN
of a 3-level system are specified by Pm � jmihmj for m �
1; 2; 3 and Q1, Q2, Q3, three rank one projectors corre-
sponding to j 1i � �j1i � 2j2i � j3i�=

���
6
p

, j 2i � �j1i �
j2i � j3i�=

���
3
p

, j 3i � �j1i � j3i�=
���
2
p

. We prepare a maxi-
mally entangled state �j11i � j22i � j33i�=

���
3
p

and mea-
sure the first qutrit labeled by A as in Fig. 1. Let the
outcome be 1. The state of the second qutrit is now either
j1i or j 1i depending on the unknown apparatus. To de-
termine which is the case, one can apply to it a unitary
operation which keeps j1i unchanged and rotates j 1i to a
state orthogonal to itself. Such a unitary can be

U1 �
1

5

5 0 0
0 �1

������
24
p

0 �
������
24
p

�1

2
64

3
75;

as U1j1i � j1i and h 1jU1j 1i � 0. If a second measure-
ment is performed on B and the output is still 1, then the
unknown device is definitelyM, otherwise it isN. The case
when the first outcome is other than 1 can be solved simi-
larly by choosing proper U2 or U3. We call such an iden-
tification strategy summarized in Fig. 1 M-U-M scheme.

Identifying single-qubit observables.—As single-qubit
observables are the simplest and at the same time the
most important, we will first discuss how to efficiently
identify them and return to the general case later. In the
1-1 © 2006 The American Physical Society
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FIG. 1. Illustration of the M-U-M scheme.
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introduction, we have shown how to do identification of
qubit observables with W states. The method used there is
quite simple: we just prepare a pure state in H �n and
measure n times without performing any extra quantum
operations. The decision is made depending solely on the n
measurement results. We call such an approach the simple
scheme. We will also need another useful scheme, the M-M
scheme. It is named thus because it modifies the simple
scheme by allowing an extra known measurement to per-
form state identification after measuring with the unknown
apparatus. Namely, in this scheme, we prepare some pure
state j�0i and implement the unknown measurement n
times. If the decision cannot be made yet, we discriminate
the part of the state not measured. Only von Neumann
measurements are considered in these two schemes; there-
fore, we can write Pm � j�mih�mj and Qm � j mih mj.
Denote by UM �

P
ij�iihij, UN �

P
ij iihij the associ-

ated unitary of M and N, respectively, and define the cor-
relation unitary of M and N by U � UyMUN � �h�ij ji�.
We have the following theorems for these two schemes.

Theorem 1. Let M and N be two von Neumann measure-
ments and U be their correlation unitary. M and N can be
identified in the simple scheme within n uses if and only if
there exists some state j�i2H �n that nullifies the diago-
nal of j�ih�jU�n. The initial state can be U�nM j�i.

We omit the proof which follows easily from the proof
of Theorem 3. The criteria can in fact be further simplified.

Theorem 2. M and N can be identified in the simple
scheme within n uses if and only if U�n has a singular
submatrix with the same row and column index set.

Proof.—We prove the ‘‘only if’’ part first. Choose j�i
such that j�ih�jU�n has zero diagonal as Theorem 1 prom-
ised. Expand j�i in the computational basis as j�i �P
iaijii. Denote I � fi j ai � 0g. For all i 2 I, we have
hij�ih�jU�njii � aih�jU�njii � 0. Hence h�jU�njii � 0
which means that submatrix with rows and columns in
set I has an eigenvalue 0 and is thus singular. The proof
of the ‘‘if’’ part simply reverses the above procedure. �
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Theorem 3. M and N can be identified in the M-M
scheme within n uses if and only if there exists some
density matrix � that nullifies the diagonal of �U�n. The
state used can be any purification of U�nM �Uy�nM .

Proof.—We prove necessity only. Let j�0i 2
H A �H B. H A �H �n is where the unknown measure-
ment is performed. Expand j�0i as j�0i �

P
ij�iij�̂ii and

j�0i �
P
ij iij~�ii, where i � �i1; i2; . . . ; in� and j�ii (j ii)

is the tensor product of j�iji (j iji). When observing result

i, perfect identification is possible if and only if h~�ij�̂ii �
0. That is, for all i, h�0jU�nN jiihijU

y�n
M j�0i � 0 or equiva-

lently tr �hijUy�nM j�0ih�0jU�nN jii� � 0. Let �0 � trB�j�0ih�0j�
and we get tr A�hijU

y�n
M �0U�nN jii� � 0. Thus, Uy�nM �0U�nN

has zero diagonal. Finally, we can choose � � Uy�nM �0U�nM
to complete the proof. �

To apply these results to the case of qubit observ-
ables, let the unknown observable be either
S � j�0ih�0j � j�1ih�1j or T � j 0ih 0j � j 1ih 1j.
Noticing that the distinguishability of S and T is equal to
that of RSRy and RTRy for any qubit rotation R, we can
assume S � �z. Let j 0i � cos��=2�j0i � sin��=2�ei’j1i,
j 1i � sin��=2�j0i � cos��=2�ei’j1i. Here, � has a nice
geometric interpretation—the angle between j 0i and j0i
in the Bloch sphere visualization [13]. For simplicity,
sometimes we abbreviate cos��=2� and sin��=2� as a and
b, respectively. The correlation unitaryU of S and T is then

a b
bei’ �aei’

� �
:

As j�ih�jU�n and j�0ih�0j�VU��n have zero diagonals si-
multaneously for V�j0ih0j�e�i’j1ih1j and j�0i�
V�nj�i, we can assume ’ � 0. Denote by w and d the
Hamming weight and Hamming distance function, respec-
tively. It is easily seen thatU�n is a 2n � 2n matrix with the
�i; j�th element

��1�w�i�j�an�d�i;j�bd�i;j�; (1)

where i; j are n-bit digits and i � j is their bitwise AND.
Our previous W state example is implied by the fact that

the submatrix of U�n with index set Wn � fijw�i� � 1g is
singular when sin2 �

2 � 1=n. A more important example

uses Theorem 1 with j�i �
P
i2En��1�w�i�=2jii=

����������
2n�1
p

,
where the index set En � fijw�i� is even; 0 	 i < 2ng.
The ith diagonal element of j�ih�jU�n is obviously 0 for
i =2 En. While for i 2 En it is
1

2n�1

X
j2En

��1�w�i�j�an�d�i;j�bd�i;j���1��w�i��w�j��=2 �
1

2n�1

X
j2En

��1�d�i;j�=2an�d�i;j�bd�i;j� �
1

2n�1

Xn
l�0

X
j2En;d�i;j��l

��1�l=2an�lbl

�
1

2n�1

X
lis even

��1�l=2nlcosn�l
�
2

sinl
�
2
�

1

2n�1 cos
n�
2
: (2)

The first equality follows from the fact that w�i� � w�j� � d�i; j� � 2w�i � j� since both sides count the number of 1’s in
i; j. The last one follows from the de Moivre’s identity. When � � 2k�1

n �, all elements on the diagonal of j�ih�jU�n
1-2
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become zero and it follows from Theorem 1 that S and T
can be identified by the simple scheme with n uses of the
apparatus. The entanglement we use in this scheme is
jGni �

P
i2En��1�w�i�=2jii=

����������
2n�1
p

. Such a state can be ef-
ficiently generated by performing parity measurements
[14] on state j0i�ij1i��

2
p �n and it is not difficult to see that

jGni is equivalent to the GHZ state up to local unitaries.
For many different �, S and T can be identified in the

simple scheme as we have already shown. However, for all
such �, tan� is an algebraic number satisfying an integer-
coefficient polynomial equation which follows from the -
zero-determinant property of the corresponding singular
submatrix. This means that simple identification is impos-
sible for the general case and this is the most severe draw-
back of the simple scheme. Fortunately, the M-M scheme
solves this problem and we can in fact prove that for any �
the optimal M-M scheme measures the unknown apparatus
d�=�e times.

The construction goes as follows. Let n � d�=�e. Our
aim is to find some � such that �U�n has zero diagonal as
Theorem 3 guarantees. If we simply set � � jGnihGnj,
Eq. (2) indicates that half of the diagonal elements are
already 0 while the other half, with index in En, are the
same number 1

2n�1 cosn�2 . They are negative as n � d�=�e.
We need to fix the negative half. To this end, partition En
into E1

n; E
2
n; . . . ; Enn, where E1

n contains all binary integers
in En that end with 0, E2

n contains those having suffix 11,
E3
n having suffix 101, and so on. Next, construct a series of

states as jG1
ni � jGn�1ij0i, jG2

ni � jGn�2ij11i, jG3
ni �

jGn�3ij101i; . . . ; jGn�1
n i � jG1ij1ij0i

n�3j1i, jGn
ni �

j1ij0in�2j1i. Simple calculation gives that jGi
nihG

i
njU

�n

has nonzero diagonal elements only when the index is in
Ein and these nonzero elements have a same positive value.
Hence, by properly choosing a probability distribution over
jGni and jGi

ni, we can have an appealing ensemble re-
quired in Theorem 3.

The proof of optimality is somewhat easier. Suppose we
can identify S and T by the M-M scheme within n uses.
Theorem 3 guarantees that there exists some � such that
�U�n has zero diagonal. Obviously, �U�n��nz also has
zero diagonal and thus has zero trace. Results from
Ref. [2] insure n 
 d�=�e, as U�z has eigenvalues e�i�=2.

One thing worth noting is that the extra known mea-
surement in the M-M scheme can be replaced by a uni-
tary operation. Suppose S and T can be identified using
the M-M scheme by measuring the unknown apparatus
n times. Let j�Si (j�Ti) be the state left after measur-
ing S (T) n� 1 times. Write j�Si � j0ij�0i � j1ij�1i
and j�Ti � j 0ij�0i � j 1ij�1i. The key property of
the M-M scheme indicates h�ij�ii � 0 for i � 1; 2.
Using the Cauchy-Schwarz inequality twice, we have
jh�Sj�Tij 	 b�jh�0j�1ij � jh�1j�0ij� 	 b�kj�0ikkj�1ik�
kj�1ikkj�0ik� 	 b. A unitary operation V can thus be
chosen such that Vj�Si � j0ij�0Si and Vj�Ti � j 1ij�0Ti
for some j�0Si and j�0Ti. After applying V, we can measure
the unknown apparatus for the last time and no state
identification is necessary anymore.
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Identifying projective measurements.—We now deal
with the general case where M�

P
mmPm, N�

P
mmQm.

Use P to represent also the corresponding projective sub-
space of a projector P since they are one to one. The
following lemma is needed to construct the general iden-
tification scheme.

Lemma 1. Let P and Q be two projectors on
d-dimensional space H . Ranks of P and Q are both r.
Then there exists some unitary U such that UP�Uy � P
and UQ�Uy ? Q if kPQk 	 1=

���
2
p

and d 
 3r where P�

(Q�) is the complex conjugate of P (Q) and k � k is the op-
erator norm. We call U the separation unitary of P and Q.

Proof.—Expand P �
Pr
i�1 j�iih�ij and Q �Pr

i�1 j iih ij. As kPQk< 1, we have P \Q � f0g and
therefore the dimension of span�P;Q� is 2r. Let j ji �Pr
i�1 ai;jj�ii �

Pr
i�1 bi;jj�ii, where fj�iig together with

fj�iig form an orthonormal basis of span�P;Q�. Let A �
�ai;j� and B � �bi;j�. It follows from the orthonormal prop-
erty of fj jig that AyA� ByB � I and from the unitarily
invariant property of operator norm that kAk � kPQk.

First, we choose U such that Uj��i i � j�ii for all i �
1; . . . ; r, then UP�Uy � P is obviously satisfied. If we
extend fj�ii; j�iig to a complete basis fj!iig of H and
write out the matrix representation of U with respect to
fj!�i ig and fj!iig of the input and output spaces, respec-
tively, then U is in fact chosen to have a blocked form like

U �

I
V � � �

..

. . .
.

2
64

3
75; (3)

where V is an r by r matrix with Vi;j � h�ijUj�
�
j i. The

second requirement, UQ�Uy ? Q, is equivalent to
h ijUj 

�
j i � 0 for all i; j and it can be further simplified

to AyA� � ByVB� � 0. Thus V � ��By��1AyA��B���1

and

kVk 	 kAk2kB�1k2 � kAk2k�ByB��1k

� kAk2k�I � AyA��1k 	 kAk2
X1
i�0

kAyAki

� kAk2 1

1� kAk2 �
kPQk2

1� kPQk2 	 1:

The second inequality is the triangle inequality applied to
the Neumann series �I � N��1 � I � N � N2 � � � � when
kNk< 1. Employing an exercise in Ref. [15], we know
that U of form Eq. (3) can be extended to a unitary as
kVk 	 1 and d 
 3r. �

If Pm and Qm satisfy the conditions in the above lemma
for all m, we can just follow the M-U-M scheme depicted
in Fig. 1 where Um is the separation unitary of Pm and Qm
as Lemma 1 guarantees. To see that M always leads to the
same results, we use the identity

Pm � Ij�i � I � P�mj�i:

Therefore, after Um is applied, the state becomes
1-3
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I �UmP
�
mj�i without normalization and is equal to I �

PmUmj�i. Because of the repeatability of projective mea-
surements, the second measurement will always getm. The
fact that observable N leads to two different outcomes
follows from a similar argument.

We now deal with the case when conditions in the
lemma are not satisfied. The first possibility is that some
Pm and Qm have different ranks, for example, rank�Pm�>
rank�Qm�. Then we are able to find some j�i 2 Pm such
that j�i ? Qm. The unknown apparatus can be identified
by simply preparing state j�i and measuring it. Second, if
for allm,Pm andQm have the same rank and kPmQmk< 1,
consider multiple measurement in parallel, namely M�L or
N�L. For sufficient large L, both the norm condition
kPQk 	 1=

���
2
p

and the dimensionality condition d 
 3r
can be satisfied. The last special case left is kPmQmk � 1
for some Pm and Qm. We reduce it to the previous case by
noticing that such an unknown apparatus can simulate
another unknown measurement whose projective subspa-
ces are P0m or Q0m, where P0m � Pm \ �Pm \Qm�

?, Q0m �
Qm \ �Pm \Qm�

?, and k P0mQ0m k <1.
It is worth noting that, in the M-U-M scheme, no post-

measurement states are used for further processing.
However, if an experiment permits further manipulation
of post-measurement states, we can even replace the bi-
partite entanglement with an arbitrary state and apply all
the operations on it.

Distance measures of measurements.—When we want to
quantify how different two observables are, the first idea
that comes into mind might be to compare their probabi-
listic behavior. Namely, we can define

Dmax�M;N� � sup
�
D�pm; qm�; (4)

where pm � tr ��Pm� and qm � tr ��Qm�. This definition
is in some sense the dual of the trace distance for density
operators as Theorem 9.1 of Ref. [13] indicates. However,
it is not a good definition in general except for single-qubit
observables. For one thing, Theorem 2 guarantees that
Dmax�S

�2; T�2� � 1 only if � is � or �=2. This can be
shown by checking submatrices of U�2. It contradicts our
intuition that the larger the value of �, the more different
the observables. What is more, this definition violates the
stable requirement of measures for operations [16,17]
��E;F ����I�E;I�F �. Indeed, if we think of S
and T as quantum operations with Kraus representation
fj0ih0j; j1ih1jg and fj0ih 0j; j1ih 1jg, respectively, then
Dmax�S; T� defined above is exactly the same as it is in
Ref. [17] and is already known to be problematic. To solve
this problem, we can use, for example, the stabilized ver-
sionDstab�Dmax�I�E;I�F � as Ref. [17] recommended.

It follows from Theorem 3 that Dstab�S�2; T�2� � 1 for
� 
 �=2 and from Theorem 2 that Dmax�S�2; T�2�< 1 for
all � 2 ��=2; ��. Thus Dstab and Dmax are different for
multiqubit measurements. Yet, for single-qubit observables
S and T, Dstab can be calculated explicitly and turns out to
20040
be equal to Dmax � sin�2 . Fidelity of observables can be
similarly studied and Fstab is generally not equal to Fmin

except for the qubit case where Fstab � Fmin � cos�2 . It is
somewhat strange that only single-qubit observables can be
differentiated using the intuitive approach.

To summarize, we have proved that all projective mea-
surements are distinguishable with a finite number of
utilization of the apparatus and have found the optimal
method for identifying qubit observables. As an applica-
tion, definitions of distance measures of measurements are
briefly discussed and it is found that probabilistic behavior
is generally incapable of fully differentiating quantum
measurements.
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