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Correlated Hybridization in Transition-Metal Complexes
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We apply local orbital basis density functional theory (using SIESTA) coupled with a mapping to the
Anderson impurity model to estimate the Coulomb assisted or correlated hybridization between transition-
metal d orbitals and ligand sp orbitals for a number of molecular complexes. We find remarkably high
values which can have several physical implications including (i) renormalization of effective single-band
or multiband Hubbard model parameters for the cuprates and, potentially, elemental iron, and (ii) spin
polarizing molecular transistors.
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The properties of transition-metal compounds are often
dominated by the 3d orbitals because their localized char-
acter causes a strong Coulomb repulsion between the
electrons. The theoretical progress in the field has been
impeded by the extreme difficulties of dealing with even
the simplest model Hamiltonian appropriate for these ma-
terials, the Hubbard model [1], consisting of a direct elec-
tron hopping between orbitals i and j with amplitude tij
and of the Coulomb repulsion U of electrons in the same
orbital. U is a matrix element of the Coulomb potential,
U � hiijV�r� r0�jiii. Matrix elements involving different
lattice sites i and j are generally smaller than U. One of
them is the so-called correlated hybridization Xij �
hiijV�r� r0�jiji that describes a density dependent hop-
ping. Estimates for Xij (0.5 eV in transition metals [1],
0.8 eV in cuprates [2]) show that the matrix elements of the
correlated hybridization are comparable to or even larger
than the corresponding amplitudes of direct hopping in real
systems. Up to now, effects caused by correlated hybrid-
ization have not yet attracted much attention: Hirsch sug-
gested a new mechanism for superconductivity [3], some
exactly solvable cases were discussed [4], finite clusters
were studied using exact diagonalization [5], metallic fer-
romagnetism was investigated [6], and correlated hybrid-
ization was studied via dynamical mean-field theory in the
Falikov-Kimball model [7].

In many compounds, cuprates and manganites are well-
known examples, the transition-metal atoms are sur-
rounded by oxygens or other elements with p orbitals so
that the 3d orbitals are only effectively coupled with each
other due to oxygen orbitals. Realistic multiband models
including oxygen degrees of freedom, as proposed for the
cuprates [8], cannot easily be mapped onto effective single-
band models (see [9] and references therein). The effective
hopping between transition-metal sites must then be me-
diated by the hybridization with p orbitals of the oxygens.
Despite the somewhat robust interest in correlated hybrid-
ization between like orbitals, there have been no ab initio
studies of the corresponding correlated hybridization [10]
between the d orbitals and surrounding p orbitals. This
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may be of considerable interest in molecular transistors
based upon transition-metal complexes for which the sur-
rounding ligand atoms provide the linkage to the leads
[11].

In this Letter, we estimate matrix elements of the corre-
lated hybridization for several transition metals in different
chemical environments from density functional theory
(DFT) calculations. To our knowledge, this is the first
systematic ab initio study of correlated hybridization ma-
trix elements, and we find remarkably high values,
although similar spin-dependent hybridization phenomena
have been noted in the context of molecular transistors
[12]. We demonstrate that these additional hybridization
matrix elements could significantly change the parameters
in effective single-band models for transition-metal oxides.
Furthermore, we demonstrate that the correlated hybrid-
ization may possibly provide a means to significant spin
polarization of currents through transition-metal based
molecular transistors in modest magnetic fields.

We have carried out spin-polarized electronic structure
calculations using the fully ab initio DFT code SIESTA [13].
It uses Troullier-Martins norm-conserving pseudopoten-
tials [14] in the Kleinman-Bylander form [15] where we
included nonlinear partial-core corrections for the
transition-metal atoms to take into account exchange and
correlation effects in the core region [16]. We used the
generalized gradient approximation (GGA) for the
exchange-correlation energy functional in the version of
Ref. [17]. SIESTA uses a basis set of atomic orbitals where
the method by Sankey and Niklewski [18] is employed. We
used a double-� basis set, and included polarization orbi-
tals for the transition-metal atoms. To determine the mini-
mum energy configuration within DFT all complexes were
allowed to relay till the force on each atom was less than
0:03 eV= �A.

The results of the SIESTA calculations are used to deter-
mine effective hybridization matrix elements. For that
purpose we map the final DFT Hamiltonian H DFT ob-
tained from SIESTA onto an effective two-band model,
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where the 3d orbitals of the transition-metal atoms are
separated from the rest. The dyi� (py��) are fermionic crea-
tion operators of 3d (ligand) electrons with spin� at orbital
i (�). To determine the one-particle energies, ~"di� and ~"p��,
and the hybridization matrix elements, ~Vi��, we apply
unitary transformations to H DFT. Because the atomic
basis states used by SIESTA are not orthogonal the trans-
formation of H DFT is performed in three steps: (i) The
block of the 3d orbitals (single � only) is diagonalized.
(ii) The 3d contributions to the ligand basis states are re-
moved. (iii) The ligand block is diagonalized. After theses
steps we obtain an effective Hamiltonian ~H of the desired
form (1) where ~H has the same eigenvalues as H DFT be-
cause ~H is derived by unitary transformation from H DFT.

Because we performed spin-dependent DFT calcula-
tions H DFT consists of two completely separated spin
sectors. Therefore, the parameters of ~H depend on the
spin direction, and we find a remarkable spin dependence
of the hybridization matrix elements if the transition-metal
atoms are in high-spin states (see Table I).

To discuss the spin dependence of the hybridization
matrix elements in detail we calculate the hybridization
broadening function, �i��!��

P
�j ~Vi��j

2��!� ~"p���, for
all impurity states i. As one can see from Fig. 1, the hybrid-
ization matrix elements of the minority spin direction are
always larger than the values of the majority spin direction.

A detailed analysis shows that this spin dependence can
only derive from correlated hybridization. To illustrate the
point, let us now consider a Hamiltonian,
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TABLE I. Maximal difference between the spin directions of the ef
metal complexes in the range 	10 eV about the chemical potentia
directions is at least 0.95. Amax is defined in Eq. (4) and the last colum
hybridization matrix elements referenced to tetrahedral or octahedra

Compound max�j ~Vi�" �

�Fe�SH�4�
2�, perfect structure 0.361 e

�Fe�SH�4�
2�, relaxed structure 0.481 e

�Cu�H2O�6�
2� 0.871 e

�Mn�H2O�6�
2� 2.416 e

�Ni�H2O�6�
2� 1.584

Co�3; 5-DBSQ�2�phen� 1.021
Co�3; 5-DBSQ��3; 5 DBCat��phen� 0.271 e
Mn�NO2-phen��3; 6-DBSQ�2 0.743 e
Mn�II��Bupy�2�3; 6-DBCat�2 0.479 e
Mn�III��Bupy�2�3; 6-DBCat�2 0.987 e
Mn�IV��Bupy�2�3; 6-DBCat�2 0.894 e
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with correlated hybridization matrix elements Ai�. H can
be easily transformed to the form of Eq. (1) if a factoriza-
tion approximation is used where the correlated hybridiza-
tion leads to spin-dependent one-particle energies ~"di� and
hybridization matrix elements ~Vi��. This consideration
can also be used to determine the matrix elements Ai� of
the correlated hybridization, one obtains

Ai� �
~Vi�# � ~Vi�"

hdyi"di"i � hd
y
i#di#i

: (3)

Because of the expectation values of the occupation num-
ber operators are restricted, 0 � hdyi�di�i � 1, the differ-
ence between the both spin directions of the effective
hybridization matrix elements (as listed in Table I) has to
be interpreted as a lower bound for the full matrix element
of the correlated hybridization. Thus, we conclude from
Table I that the correlated hybridization matrix elements
Ai� are comparable in magnitude to the regular tight-
binding hopping amplitudes Vi�. Although the commonly
used approximations of DFT such as local density approxi-
mation or CGA are known to fail in accurately describing
strongly correlated transition-metal systems (notably the
cuprates and metallic plutonium), there is a notable tradi-
tion of successfully using DFT to provide estimates of
parameters for many-body Hamiltonians, as in calculations
of the hybridization for successfully estimating Kondo
scales in a series of cerium heavy fermion systems [19].
This is the spirit of our approach; while we do not include
the feedback modification of the density to the DFT, that
has successfully been done only in one instance [20].

In the following we want to show that the large values
obtained for the correlated hybridization matrix elements
could indeed lead to intriguing physical effects. For this
purpose we consider in the following with the cuprates and
a molecular device two physical systems where the local
coordination environment of the transition-metal atoms is
precisely the same as in the clusters studied above. At first,
we consider a three-band model as proposed for the cup-
fective hybridization matrix elements ~Vi�� for several transition-
l where the overlap between the ligand states of the two spin
n gives the orbital symmetry of the maximally different effective
l symmetry.

~Vi�#j� Amax Orbital

V 0.791 t2g
V 0.354 t2g
V 0.875 eg
V 2.000 t2g

eV 1.482 eg
eV 4.700 t2g
V 0.542 t2g
V 0.664 t2g
V 0.555 t2g
V 0.717 eg
V 1.132 t2g
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FIG. 2. Panel (a) shows the schematic design of the proposed
spin filter device with the definitions of the lead-to-ligand and
ligand-to-transition-metal site hybridization matrix elements W
and V�. The energies of the involved electronic states are
sketched in panel (b).
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FIG. 1 (color online). Spin-dependent hybridization functions
for �Fe�SH�4�

2�, perfect structure, where the line spectra have
been broadened with Gaussian functions of width 0.5 eV. The
results for the majority [minority] spin direction is shown in
panel (a) [panel (b)].
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rates [8] where we use standard parameters [21], Cu 3d O
2p hybridization tpd � 1:3 eV, O 2p O 2p hybridization
tpp � 0:65 eV, Cu on-site repulsion Ud � 8:8 eV, and
charge transfer energy � � 3:5 eV. Furthermore, we add
a correlated hybridization between Cu 3d and O 2p orbitals
to the Hamiltonian with matrix elements Apd � 0:5 eV. In
accordance to our DFT estimates, Apd has the same sign
and phase factors as tpd. The three-band model can be
reduced [22] to a S � 1

2 Heisenberg model on the square
lattice of Cu sites where the coupling strength in fourth
order perturbation theory is given by J � 4t4pd=2�3 �

4t2pd�tpd � Apd�
2=�2Ud Thus, the matrix elements Apd �

0:5 eV of the correlated hybridization lead to an increase
of the Heisenberg exchange from 0.24 to 0.34 eV.

The correlated hybridization also affects the mapping of
the three-band model onto an effective single-band model
by means of a cell perturbation theory [9,23]. Despite an
increase of the magnitudes of the effective hopping matrix
elements by about 20%, the on-site Hubbard U is signifi-
cantly lowered from 2.48 to 1.94 eV. This reduction in U
may have some relevance in understanding the need to use
smaller Hubbard interactions in models of, e.g., metallic Fe
than one obtains from estimates using constrained occu-
pancy DFT [24]: If there is significant correlated hybrid-
ization of d levels with s; p levels on a neighboring site
then the same mechanism of U reduction upon folding
down to the d-band only model from the multiband model
will be operable.

Perhaps the most interesting application of our results is
to tunable molecular transistors [11,25,26], with the stron-
gest response possible not in the Kondo limit but rather the
19640
mixed valent limit. In the presence of a relatively modest
field, the correlated hybridization can impart a potentially
significant spin polarization of the current through the
device without requiring spin polarization of the leads as
has been considered both experimentally [27] and theoreti-
cally [28]. To illustrate the idea, consider the schematic
device of Fig. 2, in which a transition-metal based mole-
cule is attached to ordinary metallic leads, and assume that
a spin 1=2 large U model is applicable, as relevant for the
low spin Co complexes considered in Ref. [11] (electron
hopping) or a Cu complex (hole hopping). The bare lead-
to-transition-metal site hybridization VLd goes as V�Ld 

WV�
"l�EF

, where W is the lead-to-ligand hybridization matrix
element, "L is the ligand lowest unoccupied molecular
orbital (highest occupied molecular orbital) for electrons
(holes) to transition from lead to ligand, and V� � V0�1�
Am�� is the spin-dependent hybridization discussed ear-
lier, with A a dimensionless ratio of the assisted hopping
matrix element to the direct one V0, and m the induced
polarization m � nd" � nd# of the transition-metal ion in
an applied field H. Note that estimates,

Amax � 2
maxj ~Vi�# � ~Vi�"j

~Vi�# � ~Vi�"
; (4)

for the ratio A can be found in Table I. Importantly, we note
that A can be as large as 3–5.

We next assume that the Friedel sum rule [29] can be
applied so that the number of electrons (holes) nd on the
transition-metal site is given by nd � nd" � nd# �

�"��#
�

and the polarization m by m � 1
� ��" � �#�, where �� is

the Fermi energy phase shift for an electron of spin � to
scatter off the transition-metal site. We further take a
renormalized resonant level model for the phase shift,
with resonance position ~"� � ~"0 ��H�, � the magnetic
moment of the d levels, and resonance width ~�� � ~�0�1�
2Am��, where only contributions linear in the magnetic
1-3
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field H are taken into account. Note that in the Kondo
regime the zero-field resonance parameters satisfy�����������������

~"2
0 �

~�2
0

q

 kBTK, with TK the Kondo temperature of

the transistor. In this model, the phase shift is �� �
�
2 �

tan�1�~"�~��
�. Assuming zero bias, identical leads, and low

temperature, the conductance G� within our mean-field
treatment of the correlated hybridization in spin channel
� is approximately given by [30], G� 


e2

�@ sin2��.
Using the definitions and results of the previous para-

graph we thus find

�G" � G#�

G�H � 0�



2 sin�2�0�

1� 2A
� sin�2�0�

�H
~�0

(5)

with �0 the zero field phase shift.
The A dependent enhancement factor follows from the

impurity polarization m / G# � G". This effect is over-
estimated within our mean-field approximation, although
it has a clear physical origin: the up-spin resonance nar-
rows significantly in applied field as the down-spin reso-
nance broadens, allowing a feedback effect that enhances
the tendency towards magnetization saturation. The effect
is most pronounced in the mixed valent regime for nd 

1:5, where a critical A value of �=2 yields divergent m
within the approximation. Indeed, a significant enhance-
ment of the zero field local susceptibility was found in a
nonperturbative treatment of this model for Ud � 0 in the
mixed valent regime [10]. It might be possible to tune the
resonance into the highly polarizing regime through a
combination of gate control (to tune �d) and contact chem-
istry (to tune the lead-transition-metal ion hybridization).
The enhancement effect can also be significant in the
Kondo regime, for which j1� ndj � 0:3 [31] and
j sin�2�0�j< 0:81. Examining the A values in our table,
we obtain critical j1� ndj values of 0.11 and 0.29 for the
Co�II��3; 5� DBSQ�2�phen� and �Mn�H2O�6�

2� com-
plexes, safely within the Kondo regime.

To conclude, we have presented here the first systematic
ab initio study of correlated hybridization matrix elements
for several transition-metal complexes. Based on DFT
calculations we have found correlated hybridization matrix
elements comparable in magnitude to the regular tight-
binding hybridization amplitudes which can lead to sig-
nificant changes in the parameters of effective models for
transition-metal compounds. Finally, we have sketched
how the correlated hybridization can be employed to de-
sign spin sensitive devices, polarizing the spin current
dramatically with potentially modest applied fields and
paramagnetic leads.
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