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New Linear-Parabolic Rate Equation for Thermal Oxidation of Silicon
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We propose a new oxidation rate equation for silicon supposing only a diffusion of oxidizing species but
not including any rate-limiting step by interfacial reaction. It is supposed that diffusivity is suppressed in a
strained oxide region near the SiO2=Si interface. The expression of a parabolic constant in the new
equation is the same as that of the Deal-Grove model, while a linear constant makes a clear distinction
with that of the model. The estimated thickness using the new expression is close to 1 nm, which compares
well with the thickness of the structural transition layers.
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FIG. 1. Depth profiles of oxidant concentration (a) and activa-
tion energy of diffusivity (b) in the new oxidation model.
Thermal oxidation of silicon is among the most funda-
mental processes in the fabrication of silicon devices.
Although industry has nowadays started to replace silicon
dioxide with other specialized dielectric materials for some
applications [1], silicon oxidation is still indispensable to
easily forming an excellent interface to silicon substrate
with low density of interface states.

Ever since the work of Deal and Grove [2], the thermal
oxidation process of silicon has generally been assumed to
occur through two processes in series: (i) the diffusion of
oxidizing species through the oxide film already formed,
and (ii) the chemical reaction at the SiO2=Si interface.
According to the Deal-Grove equation, oxide thickness
increases linearly with time for relatively small oxidation
times. This is the linear regime, in which the rate-limiting
process is the interfacial oxidation reaction. At longer
oxidation times, the limiting process is the diffusion of
oxidant, and the thickness increases parabolically with
time. This is the parabolic regime. When silicon is oxidized
in dry oxygen ambient, the growth rate of oxide film
thinner than about 25 nm deviates from linear-parabolic
kinetics. To interpret this anomalous initial regime, many
hypotheses [3–6] have been proposed keeping the basic
concept of the Deal-Grove model, however. On the con-
trary, it has been pointed out that there is no convincing
evidence that the linear regime is dominated by the inter-
facial oxidation reaction [7,8].

Recent theoretical studies have brought again the subject
of the physical model for the linear regime to the attention
of researchers. First-principles calculations [9] have re-
vealed that the activation barrier for the interfacial oxida-
tion reaction is negligibly small. Furthermore, it has been
found that the layer-by-layer oxidation of silicon surfaces,
which has been observed by various experimental methods
[10], is simulated by the diffusion-limited oxidation model
when it can be supposed that the reaction occurs immedi-
ately upon the arrival of the oxidant at the SiO2=Si inter-
face [11]. These findings suggest that the linear regime is
governed by the oxidant diffusion as well as the parabolic
regime, and therefore reconsideration of the Deal-Grove
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model is necessary. In this Letter, we propose a new linear-
parabolic rate equation for thermal oxidation of silicon, in
which any rate-limiting process of oxidation reaction is
excluded.

In the present oxidation model, we suppose a compres-
sively strained oxide layers with a thickness of L localized
in the proximity of SiO2=Si interface and that the oxidant
diffusivity is suppressed in the strained layers, as indicated
in Fig. 1. We provide the following model for the diffusiv-
ity D as a function of the depth x from the oxide surface:
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:D0; 0<x<x0�L
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(1)

where x0 is the total thickness of the oxide film, �E is the
incremental barrier of the diffusivity at the SiO2=Si inter-
face, and D0 is the diffusivity in the oxide film except for
the interfacial strained region. This formula means that the
activation energy of the oxidant diffusivity is raised mono-
tonically in the strained region with approaching to the
SiO2=Si interface.

To find the oxidation rate equation, we assume that a
steady-state diffusion profile results, as well as the Deal-
Grove theory [2]. The constant flux F of oxidant across the
oxide film is given by Fick’s law, F � �D�x� dC�x�dx , where
C�x� is the concentration of oxidant at depth x. The differ-
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TABLE I. Estimated thickness of interfacial strained layers so
as to reproduce the experimental values of A. Equations (6) and
(16) are used to estimate L and la, respectively.

T �C A nm [Ref. [2] ] L nm la nm

800 370 0.76 0.93
920 235 0.92 0.99

1000 165 1.03 0.98
1100 90 0.86 0.96
1200 40 0.55 0.68
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ential equation is integrated over x in the oxide film to give

F �
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where C0 and Ci are the concentrations at the oxide surface
and at the SiO2=Si interface, respectively. erfi �z� is the
imaginary error function defined by erfi �z� � �ierf �iz�.
Since the interfacial oxidation reaction is regarded to occur
nearly spontaneously [9], the oxidant concentration at the
interface should be negligibly small in the steady-state con-
dition. It is therefore a good approximation to set Ci � 0.

After the Deal-Grove theory, the flux of the oxidant from
the gas to the vicinity of the oxide surface is taken to be

F � h�C� � C0�; (3)

where h is the gas-phase transport coefficient, and C� is the
equilibrium concentration in the oxide film. By solving
simultaneous equations of (2) and (3) under the condition
of Ci � 0, the following expression is obtained for the flux
of oxidant:
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: (4)

The growth rate of the oxide film is described by the
differential equation dx0=dt � F=N1, where N1 is the
number of oxidant molecules incorporated into a unit
volume of the oxide film. From this equation and Eq. (4),
the next linear-parabolic type equation [2] is obtained:
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B � 2D0C
�=N1: (7)

The expression of parabolic constant B is exactly the same
as that of the Deal-Grove model. The difference between
the present equation and the Deal-Grove equation lies
within the expression of A. In the Deal-Grove equation,
the constant A is given by ADG � 2D0=k� 2D0=h, where
k is the reaction constant of interfacial oxidation. In the
present theory, the reaction constant is replaced by the
expression involving the thickness of strained layers L,
and the incremental barrier of diffusion �E.

There have been reported experimental values for the
constant A and B [2]. From the Arrhenius plots of linear
constant B=A and parabolic constant B, �E is determined
as the difference of their activation energies. As discussed
by Deal and Grove [2], the term 2D0=h in Eq. (6) takes a
negligibly small value. Therefore, the unknown variable in
Eq. (6) is only L, and we estimate the thickness L so as to
reproduce the measured values of A.
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The estimated values of L at various temperatures are
shown in Table I. The experimental values for A are of the
oxidation in dry oxygen ambient [2]. The estimated values
of L are close to 1 nm, which compare well with the
thickness of the structural transition layers near the
SiO2=Si interface [12].

Here we set �E � 0:76 eV, which is the difference in
the typical experimental activation energy between 2.0 eV
[2] for the linear constant and 1.24 eV [2] for the parabolic
constant. It has been revealed by x-ray reflectivity mea-
surement [12] that the mass density of oxide layers near the
SiO2=Si interface is increased to about 2:4 g=cm3.
According to a Monte Carlo simulation [13] on the O2

diffusion in an amorphous SiO2 (a-SiO2) model, the effec-
tive activation energy for diffusion was 1.12 eV in a normal
a-SiO2 sample with the density of 2:2 g=cm3, and it in-
creased to 2.0 eV in a sample with the higher density of
2:4 g=cm3. In view of these reports, the adopted value for
�E is considered to be appropriate.

Since we have simply assumed a homogeneous oxide
model in the above derivation, it is necessary to verify the
quantitative reliability of the approximation. In dry oxida-
tion, the dominant diffusing oxidant species is the O2

molecule, which jumps among interstitial cages offered
by the oxide network [13,14]. Supposing the ideal pseu-
docristobalite model on Si(100) substrate [15], the mean
distance of the adjacent interstitial sites projected to the
surface normal axis is about 0.27 nm. The thickness of the
strained oxide layers is about 1 nm, which corresponds to
only 3 or 4 layers of interstitial sites. To estimate quanti-
tatively the thickness of the thin strained layers, it is
necessary to take into account the microscopic picture of
an O2 molecule jumping among the potential minima in the
oxide film.

From this paragraph, we derive the rate equation based
on an atomistic model. Figure 2 shows schematics of the
potential energy profile of an O2 molecule near the SiO2=Si
interface assumed in this model. The gradient of oxide
strain introduces bias into the diffusion process by increas-
ing the barrier toward the interface. The net flux of the
oxidant from a potential minimum at x to an adjacent
minimum at x� a is given by

F � C�x�a���x� � C�x� a�a���x� a�; (8)
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FIG. 3. Potential energy profiles of oxidant in the transition
layers. (a) States with an additional potential energy of �E at the
interface. (b) Intermediate state in which the potential is de-
creased by �E=l at the interface.

FIG. 2. (a) Microscopic potential energy profile of oxidant
around the interfacial strained layers. (b) Flux of oxidant through
a barrier in the oxide film.
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where a is the mean distance of the adjacent potential
minima, and ���x� and ���x� are the jumping rates of
oxidant at x toward the SiO2=Si interface and the oxide
surface, respectively. Since Eq. (8) is valid for any adjacent
potential minima, the following recursive formula is de-
rived

C�na� �
F

a���na�
� C	�n� 1�a


��	�n� 1�a

���na�

; (9)

where n is an integer number. We define xb as the position
of a potential minimum just before the starting point of the
interfacial strained region.

By solving the recursive formula (9) from xb over l
layers, the next expression is obtained
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���xb�
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� C	xb � �l� 1�a
: (10)

Here we set x0 � xb � la; i.e., the interfacial strained
oxide region is l layers in thickness. Since it is assumed
that an O2 molecule is immediately consumed to oxidize
the silicon if it reaches the substrate, it is a good approxi-
mation to set C	xb � �l� 1�a
 � 0, so that the second
term of the right side of Eq. (10) is eliminated. ��=�� in
Eq. (10) is the ratio of the jumping rate toward the oxide
surface to that toward the SiO2=Si interface. If we assume a
linear slope of potential energy in the strained oxide layers,
��=�� takes a constant value in that region. In this case,
the activation barrier of �� is lowered by the half value of
�E=l, and that of �� is increased by the same value, as
shown in Fig. 2(b). Therefore, ��=�� � exp	�E=lkBT
.
At the position xb, since there is no longer exists the
potential gradient, ���xb� is same as that in the remaining
part of oxide film. Hence ���xb� is related to the diffusivity
in the bulk oxide as ���xb�	� ���xb�
 � D0=a2.
Therefore, from Eq. (10) the oxidant fluxF is derived to be
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F �
C�xb�D0

a

�
Ex �1l� � 1

Ex �l�1
l � � 1

�
; (11)

where Ex �z� � exp	z�E=kBT
 as a simple notation.
It should be noted that the SiO2=Si interface moves

forward as the oxidation reaction progresses. Since the
thickness of interfacial strained layers is regarded as nearly
constant, the potential profile in the strained region
changes periodically with the period of one monolayer
oxidation, as illustrated in Fig. 3. The potential profile
shown in Fig. 2 corresponds to the phase with highest
barrier at the SiO2=Si interface, and the flux given by
Eq. (11) is the minimum estimate. To estimate the mean
value for the oxidant flux, we must take the intermediate
phases with lower barriers into account. The maximum
flux in the case of the lowest barrier shown in Fig. 3(b) is
obtained in the same way:

Fmax �
C�xb�D0

a

�
Ex �1l� � 1

Ex �1l� � Ex �1� � 2

�
: (12)

Taking the average of Eqs. (11) and (12), the mean flux �F
in the interfacial strained region is obtained:

�F � C�xb�D0 ��=a; (13)

�� �
	Ex �1l� � 1
	Ex �l�1

l � � Ex �1l� � Ex �1� � 3


2	Ex �1l� � Ex �1� � 2
	Ex �l�1
l � � 1


: (14)

By equating the mean flux Eq. (13) with the flux from
the gas to the oxide surface given by Eq. (3), and with the
flux in the remaining part of the oxide given by

F � �D0
C�xb� � C0

x0 � la
; (15)

the same differential equation with Eq. (5) is obtained.
Here

A � 2a= ��� 2la� 2D0=h; (16)

and B is just the same expression as with Eq. (7). The
thickness of the interfacial strained layers la estimated by
2-3



PRL 96, 196102 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
19 MAY 2006
using Eq. (16) is shown in Table I. Here we set a �
0:27 nm, providing the pseudocristobalite oxide structure
[15]. The estimated thickness is closer to the reported value
of 1 nm for the dense oxide layer at the SiO2=Si interface
[12], supporting the validity of the present theory.

An essential difference from Deal-Grove’s equation is
that the linear constant B=A in the present theory is pro-
portional to the oxidant diffusivity D0. From Eq. (16), B=A
is given by

B
A
�

D0C
�

aN1�1= ��� l�
; (17)

where 2D0=h in A is omitted. On the other hand, the linear
constant in the Deal-Grove theory is B=ADG � kC�=N1,
which does not depend on D0. This difference produces a
substantial change in the interpretation of the anomalous
initial regime as discussed as follows.

Fargeix et al. [16] have confirmed that the inverse oxi-
dation rate dt=dx0 against the oxide thickness x0 has
deviated from a linear dependence predicted by the
linear-parabolic rate equation, in the initial oxidation re-
gime. The tendency of the deviation was attributed to either
an increase in B=A or a decrease in B. In the Deal-Grove
scheme, that means either an increase in the reaction
constant k or a decrease in the diffusivityD0. In the present
model, however, B=A is proportional to D0 as well as B,
and the deviation can be attributed to the increase in D0.
Providing that D0 depends on x0, the differential coeffi-
cient of the inverse oxidation rate is

d
dx0

�
dt
dx0

�
�

N1

D0C
�
�

N1

2D2
0C
�
�A� 2x0�

dD0

dx0
; (18)

where the second term on the right side corresponds to the
deviation from the linear-parabolic relationship. Experi-
mental results show that the deviation in the differential
coefficient takes positive values [16]. Hence dD0=dx0 must
be a negative number, i.e., D0 increases as x0 decreases
[17]. Thus the hypothesis of enhanced diffusion [2,3],
which was once dismissed in the context of Deal-Grove
equation [4,16], comes back again via the present theory.

It should be noted that the enhanced diffusion hypothesis
for the anomalous initial regime does not contradict the
present model. While the diffusivity in the interfacial
strained layers is assumed to be suppressed, it is possible
that the diffusivity given by Eq. (1) is enhanced entirely
due to the increase in D0. Microchannels in the oxide film
for diffusing species [3] is one of the possible explanations
for the increase in D0.

The present model argues that the linear region is caused
by the strained oxide region near the interface. The linear
19610
region is expected to disappear if the interfacial stress is
vanished, although it may be difficult to realize such a
system experimentally. Contrary, according to the Deal-
Grove model, the linear region should exist regardless of
the extent of the stress at the interface.

In conclusion, we have derived a new linear-parabolic
rate equation for the thermal oxidation of silicon without
the rate-limiting step of interfacial oxidation reaction,
assuming that the oxidant diffusivity is suppressed in the
thin strained layers near the SiO2=Si interface. The thick-
ness of the strained layers estimated by our model is close
to that of the structural transition layers, and we have found
that the anomalous initial regime can be explained by the
enhanced diffusion hypothesis.
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