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Similarities in the Cp=T3 Peaks in Amorphous and Crystalline Metals
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A low-temperature peak in Cp=T3 vs T is ubiquitous to glasses. It arises from an abundance of low-
frequency vibrations, the origin of which remains unclear. A comparable Cp=T3 vs T peak is observed in
crystals due to the dispersion of acoustic phonons and/or the excitation of optical phonons. We compared
the Cp=T3 vs T peaks in metallic and oxide glasses to elemental crystals by analyzing specific heat,
phonon density of states, and elastic constant data. We observe no clear distinction in the peak temperature
or amplitude between metallic glasses and crystals. Surprisingly, the peak is larger in single crystal
Pd40Cu40P20 than in glassy Pd40Cu40P20.
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FIG. 1. Cp;lat=�T
3 versus T=�D for hcp Zn [24,25], fcc Cu

[25], glassy SiO2 [4,25], simple tetragonal (st) Pd40Cu40P20

single crystal [our data], glassy Pd40Cu40P20 [our data], and
the Debye model. For clarity, only selected data points are
shown. The arrow defines the peak amplitude for SiO2.
Amorphous solids have two low-temperature specific
heat anomalies. The first occurs below 1 K, where the
heat capacity has a linear dependence on temperature
that cannot be attributed to conduction electrons [1]. This
behavior has been explained in terms of an ensemble of
two-level tunneling systems having a uniform distribution
of energy gaps [2,3]. The second anomaly occurs above
�2 K, where glasses have a phonon heat capacity that is
larger than expected based upon the Debye T3 law [4]. This
excess is usually observed as a hump in a plot of Cp=T3 vs
T that is centered at �5–20 K.

The hump in Cp=T3 vs T appears because glasses have
an excess of low-energy vibrational states that are not ac-
counted for by the Debye model. These modes are seen in
inelastic neutron scattering [5,6]. In Raman scattering they
appear as a low-frequency peak whose intensity varies with
temperature according to the Bose distribution function
(which has led to the name ‘‘boson’’ peak) [4]. Because
these extra low-frequency states are observed in glasses of
all bonding types (metallic, covalent, ionic, etc.) [5], they
are thought to be a fundamental feature of glass dynamics.

The origin of the extra low-frequency states remains un-
clear. It has been suggested that they result from resonant
modes involving loosely bound structural fragments [7],
atom clusters [5], or strings of atoms [8], the latter identi-
fied through molecular dynamics simulations [8]. In the
frequently cited soft potential model, the low-frequency
vibrations, whatever their nature, are represented by soft
anharmonic potential wells [9]. Other authors have mod-
eled these modes with spatially fluctuating interatomic
force constants [10]. These models are phenomenological
and provide no microscopic explanation for the origin of
the excitations. The interstitialcy theory [11,12] proposes a
microscopic origin of the boson peak. This theory models
the amorphous solid as a crystal that contains �3–10%
self-interstitials in dumbbell configurations. Here, the bo-
son peak arises simply from the excitation of the low-
frequency resonant modes of the self-interstitials.

The low-temperature lattice heat capacity of most crys-
talline solids also exceeds the Debye T3 prediction [13],
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leading to a hump in the Cp=T3 vs T curve that, as will be
shown here, closely resembles the hump in glasses. In
contrast to glasses, the origin of the Cp=T3 vs T peak in
crystals is known [13].

In view of the similarities in their Cp=T3 vs T peaks, it is
interesting to compare glasses and crystals to determine if
the boson peak vibrational modes in glasses can be differ-
entiated from low-frequency acoustic and optical modes in
crystals using the specific heat data alone. We have ana-
lyzed low-temperature specific heat, phonon density of
states, and elastic constant data for a variety of crystalline
and glassy materials. Figure 1 shows Cp;lat=�T3 vs T=�D
for several crystalline and amorphous solids. In the figure,
Cp;lat is the phonon heat capacity, � � 12�4R=�5�3

D� (the
Debye T3 coefficient), �D is the Debye temperature, and R
is the gas constant. All data were obtained from the litera-
ture, with the exception of the Pd40Cu40P20 data, which is
our own. Each material in Fig. 1 has a hump in its
Cp;lat=�T3 vs T=�D curve in the temperature range where
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the Debye model predicts Cp;lat=�T
3 is constant. Note that

the peak amplitude is larger for the Pd40Cu40P20 single
crystal than for the Pd40Cu40P20 glass.

Figure 2 shows the measured (solid curve) [14] and the
Debye [dashed curve, g�!� / !2] vibrational density of
states (VDOS) for Cu. Most fcc and bcc crystals that lack
optical modes have a VDOS spectrum similar to that
shown in Fig. 2. In the range 10< @!< 21 meV, the
measured VDOS exceeds the Debye model prediction
(horizontally hatched area, Fig. 2), whereas in the range
21< @!< 27 meV, the measured VDOS is lower than the
Debye model prediction (vertically hatched region). By
considering the progressive excitation of phonons with
increasing temperature, it is easy to visualize that the
peak in the Cp;lat=�T

3 vs T=�D curve corresponds to the
energy where the measured and Debye VDOS cross for the
first time at �21 meV. As the temperature increases and
phonons in the 10< @!< 21 meV range become excited,
the specific heat increases more rapidly with temperature
than predicted by Debye’s T3 law. The value of Cp;lat=�T

3

then rises above the Debye model prediction by an amount
proportional to the horizontally hatched area. Excess heat
capacity continues to accumulate until the temperature also
excites phonons in the 21< @!< 27 meV range. Once
this happens,Cp;lat increases more slowly with temperature
than predicted by the Debye T3 law, and Cp;lat=�T

3 de-
creases [15].

The abrupt changes in the VDOS in Fig. 2 are van Hove
singularities, which denote critical points in reciprocal
space where a dispersion curve has zero slope (d!=dK �
0) and the corresponding lattice wave is nonpropagating
[16]. Some (but possibly not all) such critical points are
located at high symmetry points at the boundaries of the
first Brillouin zone [17]. The down-pointing arrows in
Fig. 2 denote frequencies where d!=dK � 0, which we
obtained from the phonon dispersion curves for Cu [14].
Only selected critical points are indicated. Each arrow is
associated with a propagation direction (in brackets) and a
polarization direction (T�Transverse, L�Longitudinal).
FIG. 2. Experimental (solid line, [14]) and Debye (dashed line)
VDOS for Cu. The significance of the downward and upward
pointing arrows is described in the text.
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Of special interest here is the singularity at the crossover
frequency @!� � 21 meV. As exemplified in Fig. 2, @!�

for fcc elements corresponds to the Brillouin zone bound-
ary frequency for the two shear waves in the [100] direc-
tion and the low velocity shear wave in the [110] direction.
For bcc elements, @!� corresponds to the Brillouin zone
boundary frequency for shear waves in the [100] and the
[111] directions. By analogy with cubic crystals, in hcp and
trigonal crystals @!� is expected to correspond to the zone
boundary frequency for the fast shear wave in the [100]
direction.

The dispersion curve for a given acoustic branch and
propagation direction can be approximated using the
Born–von Kármán model for a linear chain of atoms,

! �
2VEKBZ
�

sin
�
2

K
KBZ

: (1)

In Eq. (1), VE � �Cij=��1=2 is the acoustic wave velocity
for the given propagation direction and polarization, Cij is
the corresponding elastic constant, � is the density,K is the
wavevector magnitude, and KBZ its value at the Brillouin
zone boundary. According to Eq. (1) the frequency at the
boundary is !BZ � �2=���Cij=��1=2KBZ.

In a cubic material @!� corresponds to !BZ for trans-
verse waves propagating in the [100] direction. Thus the
peak temperature in the Cp;lat=�T

3 vs T curve is associ-
ated with C44. Substituting values for C44, �, and KBZ
(�2�=a, where a is the lattice parameter) in the above
equation we find @!BZ � @!� � 21:9 meV. This fre-
quency, which is indicated by the upward pointing arrow
in Fig. 2, closely matches the value of @!where d!=dK �
0 in the measured phonon dispersion curves of Cu.

Figure 3 shows the Cp;lat=�T3 peak temperature versus
@!� � �2=���Cshear=��1=2 KBZ for 12 cubic elements (4
bcc and 8 fcc, squares), 6 hcp elements (hexagons), 6
metallic glasses [solid dark circles (blue online)], and 3
oxide glasses [solid light gray circles (red online)] [18].
Data for one tetragonal alloy [open circle (blue online)]
and two trigonal oxides [open circles (red online)] are also
shown. All data were obtained from the literature, except
that for Pd40Cu40P20, which is our own. The abscissa of
Fig. 3 corresponds to @!BZ for shear waves propagating in
the [100] direction. For a transverse wave in the [100]
direction of fcc and bcc crystals KBZ � 2�=a (� to X in
fcc, � to H in bcc) and Cshear � C44. For a transverse wave
in the [100] direction in hexagonal and trigonal crystals,
KBZ � 2�=�a

p
3� (� to M) and for the fast shear wave

Cshear � C0 � �C11–C12�=2. For the glasses the boundary
of the first pseudo-Brillouin zone was taken to be KBZ �
Qp=2, where Qp corresponds to the first sharp diffraction
peak in the structure factor S�Q� of metallic glasses [19,20]
and the second peak in the S�Q� of oxide glasses [19]. In
elastically isotropic glasses, Cshear � C44.

The solid black line in Fig. 3 was fitted to the data for the
12 cubic elements (which have no optical phonons), and
the dark and light gray (blue and red online) lines were
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FIG. 4 (color online). Peak amplitude versus
	Cshear=�C44C

0�1=2
3=2 for the same materials as in Fig. 3. Left
to right the crystals are Cubic: Cr, Ar, Mo, W, Al, Pt, Kr, Fe, Ni,
Au, Ag, and Cu; hcp: Mg, Ru, Re, Zr, Zn, and Cd; Trigonal:
�-GeO2 and �-SiO2; Tetragonal: Pd40Cu40P20. Top to bottom
the glasses are SiO2, GeO2, B2O3, and Pd40Cu40P20. Inset: Cubic
elements.

FIG. 3 (color online). Peak temperature vs @�2=���Cshear=��
1=2

KBZ for crystals and glasses. Left to right the materials are Cubic
(squares): Kr [26], Ar [26], Au, Pt [27], Ag, Al [25,28], Cu, W,
Ni, Mo, Cr, and Fe; hcp (hexagons): Cd [24,25], Zr, Mg, Re, Zn
[24,25], and Ru [29]; Tetragonal [dark gray circle (blue online)]:
Pd40Cu40P20 [our data]; Trigonal [light gray circles (red online)]:
�-GeO2 [30,31], �-SiO2 [1,32]; Metallic glasses [solid dark
circles (blue online)]: Pd77:5Si16:5Cu6 [33,34], Pd40Cu40P20

[our data], Zr41Ti14Cu12:5Ni10Be22:5 [35], Fe40Ni40B20 [36,37],
Fe60Ni40B20 [36,37], and Fe80B20 [36,37]; Oxide glasses [solid
light gray circles (red online)]: B2O3 [38,39], GeO2 [40], SiO2

[4,25,41]. Data not specifically referenced are from
Refs. [25,32].
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fitted to the data for the six metallic and the three oxide
glasses, respectively. The dashed line plots Tpeak � �D=35,
which is predicted by the interstitialcy theory [11]. To
construct this line we used Debye temperature and shear
modulus data for the prototype metallic glass Pd40Ni40P20

[21]. The data for the hcp elements (which have optical
phonons) shows some scatter. However, these data show a
trend: (1) the peak temperatures for Mg, Re, and Ru (which
have optical branches above @!�) are greater than for cubic
crystals, and (2) the peak temperatures of Cd and Zn
(which have optical modes that lie mainly below !�

[22,23] and thus hybridize with the acoustic modes) are
lower than the peak temperatures for the cubic elements,
and similar to the peak temperatures for the metallic
glasses. Furthermore, in Cd and Zn the dispersion curves
for transverse acoustic waves in the [100] and [110] direc-
tions have d!=dK � 0 singularities near the middle of the
Brillouin zone and thus do not follow the dispersion rela-
tion given in Eq. (1). Both the optical modes and these
strongly dispersive acoustic branches contribute to a high
VDOS at low frequencies, certainly lower than the cross-
over frequency (Fig. 2).

We now address the magnitude of the Cp;lat=�T
3 peak.

The height of the peak in the Cp;lat=�T
3 vs T=�D curve is

related to the number of vibrational modes in excess
of the Debye VDOS between zero frequency and !�.
Let us consider this excess for Cu. ForN atoms the number
of Debye vibrational modes with ! � !� is ND �
3N�!�=!D�

3, where !D is the Debye frequency. Numeri-
19590
cally integrating the area under the Cu VDOS up to !� we
count approximately 1:7N modes. This was also the case
for several other fcc crystals, whereas for bcc materials the
value is �2N modes. Hence for cubic materials, the num-
ber of excess modes between 0 and !� is approximately
NE � 1:85N–3N�!�=!D�

3.
The Debye frequency is determined mainly by the

transverse acoustic phonons. We therefore take !D as
proportional to the mean shear wave velocity, !D /

	�C44C
0�1=2=�
1=2, where �C44C

0�1=2 is the mean shear
modulus. Substituting the expressions for !D and !�

into the equation for NE, we find

NE � 1:85N–3N�
�
Cshear������������
C44C

0
p

�
3=2
; (2)

where � � const, Cshear � C44 for cubic crystals and
glasses, and Cshear � C0 for hcp and trigonal crystals.

Figure 4 is a plot of the peak amplitude (defined in
Fig. 1) versus 	Cshear=�C44C

0�1=2
3=2. That the data for cu-
bic elements can be fitted with Eq. (2) (solid line) implies
that the peak amplitude is indeed proportional to the num-
ber of excess modes. The data for the hcp elements, tri-
gonal oxide crystals, and tetragonal Pd40Cu40P20 crystal,
however, clearly lie above the line for cubic materials and
cannot be described by Eq. (2). This reflects the contribu-
tions of optical phonons and/or strongly dispersive acoustic
phonon branches to the peak amplitude. The data for the
metallic and oxide glasses also lie above the line for cubic
crystals.

In summary, a peak in Cp;lat=T3 vs T is quite universal,
appearing in crystalline as well as in amorphous materials.
We have found that the temperature of the peak is related to
the frequency where the Debye and actual VDOS cross for
the first time. In hexagonal crystals the optical phonons and
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the strongly dispersive acoustic phonon branches [which
cannot be described by Eq. (1)] lower the temperature and
increase the amplitude of the peak. In fact, the amplitude is
larger than for cubic elements and metallic and oxide
glasses [18]. Ostensibly, the foregoing analysis suggests
that glasses also have low-frequency optical-like phonons
and/or strongly dispersive acoustic phonon branches that
contribute to the Cp;lat=T

3 peak.
An alternative explanation for the Cp;lat=T3 peak is that

the excess low-frequency states arise from resonant vibra-
tional excitations associated with specific ‘‘defects’’ in
glasses. For the resonant frequencies to be low, the defects
should have a large effective mass and/or weak elastic
restoring force. Two such defects are stringlike arrays
identified by Schober and Oligschleger in molecular dy-
namic simulations of monatomic glasses [8] and interstitial
pairs in dumbbell configuration proposed by Granato [11].
However, strings and interstitials in dumbbell configura-
tion are not the only defects that could exist and be excited
in glasses. Multicomponent bulk metallic glasses such as
Pd40Cu40P20 are characterized by weak metal-metal inter-
atomic bonds and strong metal-metalloid bonds. In these
glasses, the large discrepancy between bond strengths, the
large difference between the masses of the metal and P
atoms, and the presence of strong chemical short-range
order (P atoms are surrounded only by metal atoms) should
be conducive to low-frequency, breathing-type modes.
Arguments could also be made that the atoms near regions
of excess free volume in the glass are loosely bound and
vibrate at relatively low frequencies. However, our mea-
surements show that the temperature and amplitude of the
Cp;lat=�T3 peak change little upon carefully annealing an
as-quenched metallic glass.

The present analysis finds no clear distinction between
the position and amplitude of the Cp;lat=T3 peak in crystals
and the peak position and amplitude in metallic glasses.
This is underscored by two observations: (1) the Cp;lat=T3

peak is larger in Cd and Zn than in glassy Pd40Cu40P20 and
(2) the peak amplitude for the Pd40Cu40P20 single crystal is
larger than for the Pd40Cu40P20 glass. The latter result
shows that the crystal has an even greater excess of low-
frequency vibrational states than the glass of the same
composition. Our analysis does suggest that the Cp;lat=T3

peak occurs at an anomalously low temperature in oxide
glasses compared to metallic glasses or crystals. This
implies that the excess vibrational (boson peak) modes
have relatively lower frequencies in oxide glasses than in
metallic glasses.
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