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Dipole of the Luminosity Distance: A Direct Measure ofH�z�
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We show that the dipole of the luminosity distance is a useful observational tool which allows us to
determine the Hubble parameter as a function of redshift H�z�. We determine the number of supernovae
needed to achieve a given precision for H�z� and to distinguish between different models for dark energy.
We analyze a sample of nearby supernovae and find a dipole consistent with the cosmic microwave
background at a significance of more than 2�.
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One of the biggest cosmological surprises in recent years
was the discovery that the Universe is presently undergoing
a phase of accelerated expansion [1]. The reason for this
behavior is still a complete mystery.

If the Universe is homogeneous and isotropic on large
scales, all contributions to the cosmological energy mo-
mentum tensor are characterized by their energy density
��z� and pressure P�z� as functions of cosmic redshift z.
Accelerated expansion requires that overall �� 3P< 0
today. This can be achieved by introducing a so-called
‘‘dark energy’’ component with a very negative pressure
in addition to the usual pressureless matter. One of the
main challenges of observational cosmology is to charac-
terize the properties of this dark energy. The homogeneous
and isotropic aspects of dark energy are completely deter-
mined by the equation of state parameter wde�z� �
Pde�z�=�de�z� which links its pressure and energy density.
The primary goal of observational dark energy studies is to
measure the function wde�z�.

Current experiments probing the dark energy equation
of state measure luminosity distances to supernovae or the
angular diameter distance to the last scattering surface via
the cosmic microwave background (CMB) peak positions.
These distances are linked to wde�z� through a double
integration, which renders them rather insensitive to rapid
variations of the equation of state. The required modeling
can lead to strong biases that are difficult to detect and
quantify [2]. A direct measurement of the Hubble parame-
ter H�z� would facilitate the derivation of wde�z� im-
mensely and allow for a more direct comparison with
model predictions. As an explicit illustration, let us con-
sider a flat universe. The Friedmann equations then yield
the following relation between wde�z� and H�z�

wde�z� �
3

2

�
2=3H0�z� �H2�z�

H2�z� �H2
0�m�1� z�3

�
: (1)

Apart from H�z� and its derivative only the parameter
combination �mH2

0 appears, which will be measured by
the Planck satellite to an accuracy of about 1%.

It is possible to obtain H�z� by computing the numeri-
cal derivative of the distance data [3], but the current
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data leads to a very noisy result. In the future, radial
baryon oscillation measurements should be able to mea-
sure H�z� directly. Here we propose an alternative, com-
pletely independent method based on luminosity distance
measurements.

In a previous paper [4] we have considered the luminos-
ity distance dL as a function of the source redshift z and
direction n. We have shown that not only the direction-
averaged luminosity distance,

d�0�L �z� �
1

4�

Z
d�ndL�z;n� � �1� z�

Z z

0

dz0

H�z0�
; (2)

but also its directional dependence, dL�z;n� can be of
cosmological interest. The directional dependence can be
expanded in terms of spherical harmonics, leading to ob-
servable multipoles, Cl�z�. In this Letter we concentrate on
the dipole (corresponding to l � 1),

d�1�L �z� �
3

4�

Z
d�n�n � e�dL�z;n�: (3)

Here e is a unit vector denoting the direction of the dipole
and d�1�L �z� is its amplitude.

As we have discussed in [4] (see also [5]), for z * 0:02
the dipole is dominated by the peculiar velocity of the
observer for all redshifts. The lensing contribution to C1

is of the order of 10�9 while our peculiar motion induces a
dipole of C1 ’ 10�3–10�6 for z & 2. At high l’s, i.e., small
scales the lensing contribution dominates for z * 1, but
this does not interfere with the dipole as it averages to zero
under the integration (3). Neglecting multipoles higher
than the dipole we can write the full luminosity distance as

dL�z;n� � d�0�L �z� � d
�1�
L �z��n � e�: (4)

To derive a formula for d�1�L (more details are found in
[4]), we use the luminosity distance to a source emitting
photons at conformal time � in an unperturbed Friedmann
universe, d�0�L � �1� z���0 � ��. The motion of the ob-
server gives rise to a Doppler effect which is the dominant
contribution to the dipole,
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FIG. 1. Direction of the luminosity dipole from a low-redshift
supernovae sample, in a celestial coordinate system centered on
the CMB dipole (1 and 2� contours). The two directions agree
well.
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dL��;n� � d�0�L ����1� �n � v0�	; (5)

where v0 is our peculiar velocity. However, conformal time
� is not an observable quantity, but the source redshift, z �
�z��� � �z is. Here �z��� � 1=a��� � 1 is the unperturbed
redshift. To first order

dL��;n� � dL��z;n� � dL�z;n� �
d
d�z
d�0�L ��z��z: (6)

With d�0�L ��z� � �1� �z���0 � ��, we have

d
d �z
d�0�L � �1� �z��1d�0�L �H�1��z�

and �z � ��1� �z��v0 � n� � higher multipoles:
(7)

Here H �z� � H�z�=�1� z� is the comoving Hubble pa-
rameter. Inserting this in Eq. (5), we obtain

d�1�L �z��n � e� �
1� z

H �z�
�n � v0�: (8)

Although v0 is in principle a random variable, we can
measure it directly from the CMB dipole which is due to
the same motion. Its magnitude is jv0j � �368
 2� km=s
according to the COBE satellite measurements [6]. The
amplitude of the luminosity distance dipole is then

d�1�L �z� �
jv0j�1� z�

H �z�
�
jv0j�1� z�2

H�z�
; (9)

and its direction is e � v0=jv0j. The dipole in the super-
nova data gives therefore a direct measure of H�z�.

As a first step we want to test whether there is a dipole
present at all in the supernova distribution, and if its
direction and magnitude is compatible with expression
(8) (see also [7]). Supernova data are conventionally
quoted in terms of magnitudes rather than the luminosity
distance. The link between magnitudes and the luminosity
distance is given by

m�M � 5log10�dL=10 pc�; (10)

where M is the intrinsic magnitude [however, the absolute
magnitude normalization is degenerate with log�H0� and is
usually marginalized over]. We use the low-redshift sample
of 44 supernovae assembled by the SNLS team [8], to-
gether with the supernova locations from [9]. To the given
photometric error we add an error for the peculiar velocity
of the source of 300 km=s and a constant dispersion of
�m � 0:12. The latter error ensures a reasonable goodness
of fit of both the monopole and dipole term. We subtract the
monopole of m�z;n� and find the best fit value of v0 for the
dipole. In Fig. 1 we show the angular uncertainty of v0. The
direction is compatible with the CMB dipole at the 1�
level. The magnitude of the luminosity dipole gives jv0j �
405
 192 km=s, in good agreement with the CMB dipole
value of 368 km=s.
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Fixing the CMB dipole direction and fitting only the
amplitude, we obtain jv0j � 358 km=s with �2

min � 48:2,
whereas v0 � 0 gives �2 � 52:7. The absence of a dipole
is therefore disfavored at over 2�.

Let us estimate the accuracy with which we can deter-
mine H�z� from a measurement of N supernovae in a
redshift bin �z� dz; z� dz	. We assume that the magni-
tude of each supernova is known with a precision �m
(independent of z). We consider v0 given by the CMB
dipole and work with the ansatz (4). The error in the
magnitude translates into an error on the luminosity dis-
tance,

�dL�z;n� �
ln�10�

5
dL�z;n��m�z;n�: (11)

We add the error into our ansatz, setting

m�z;n� � m�0��z� �m�1��z��n � e� � �m�z;n�; (12)

dL�z;n� � d�0�L �z� � d
�1�
L �z��n � e� � �dL�z;n�: (13)

We assume that different supernovae are uncorrelated, so
that the variance of the magnitude is given by

h�m�z;n��m�z;n0�i � 4���m�2�2�n� n0�: (14)

The error on the dipole can now be computed using

�d�1�L �z� �
3

4�

Z
d�n�n � e��dL�z;n�: (15)

Its variance is

��d�1�L �z�	
2 � h��d�1�L �z�	

2i � 3
�
ln�10�

5

�
2
�m2�d�0�L �z�	

2:

(16)

As the monopole is much larger than the dipole we have
neglected the latter in the previous expression and obtain
our final formula for the variance of the dipole

�d�1�L �z� ’

���
3
p

ln�10�

5
d�0�L �z��m �

���
3
p

�dL�z�: (17)

The absolute error on the dipole is therefore comparable
to the error on the monopole and, not surprisingly, the
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relative error is much larger,

�d�1�L �z�

d�1�L �z�
�

���
3
p �d�0�L �z�

d�1�L �z�
�

�d�0�L �z�

d�0�L �z�
: (18)

We will therefore need a large number of supernovae to
determine H�z� with reasonable accuracy.

As the Hubble parameter is inversely proportional to the
dipole, its relative error is simply

�H�z�
H�z�

�
�d�1�L �z�

d�1�L �z�
�

���
3
p

ln�10�

5jv0j

d�0�L �z�H�z�

�1� z�2
�m: (19)

This formula is valid for any model of dark energy. Once
we have measured the luminosity distance, we can calcu-
late the monopole and the dipole, deduce the Hubble
parameter, and Eq. (19) gives the error on H�z� per super-
nova at that redshift. We plot the relative error on H�z�
(which is the same as the relative error on the dipole
amplitude) in Fig. 2 for a flat universe with a cosmological
constant and cold dark matter (�CDM) with �� � 0:7.
We use two values for the error on the magnitude, �m �
0:1 and �m � 0:15. This is comparable to the accuracy of
recent supernova surveys like SNLS [8].

In the future it may be possible to control systematic
errors much better—indeed the very dipole that we want to
measure is part of the systematic error budget of current
surveys [10]. Proper assessment of the dipole contribution
may therefore also help to measure the monopole with
higher precision. Our assumed value for �m is probably
pessimistic as most systematic uncertainties are expected
to affect the overall luminosity at a given redshift, i.e., the
monopole. The dipole which relies on the angular distri-
bution of the luminosity should be far more resistant to
FIG. 2 (color online). We show the relative error in H�z� for
one supernova, as a function of the redshift, in a flat �CDM
universe with �� � 0:7 and for two different values of the
intrinsic error �m � 0:1 and �m � 0:15. This represents as
well the relative error in the dipole d�1�L �z�.
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effects like, for example, evolution of the supernova popu-
lation with redshift.

ObservingN independent supernovae, the mean error on
the magnitude is reduced to �m���

N
p . In Fig. 3 we plot the

number of supernovae needed to measure H�z� with an
accuracy of 30%. This number scales quadratically with
the errors; we need to measure 100 times more supernovae
to decrease the error by a factor of 10 to 3%. On the other
hand, if we manage to decrease �m by a factor of 10
through an improved understanding of supernova explo-
sions and better measurements, then we need 100 times
fewer supernovae.

One crucial question about dark energy is whether it
does indeed behave as a cosmological constant or not.
Having measured the dipole at different redshifts, it is
possible to compare directly the measured value of H�z�
with the one predicted for a flat �CDM universe. If the two
do not agree, dark energy must be due to a different
mechanism, like quintessence or a modification of general
relativity. In Fig. 4 we plot the number of supernovae
needed to distinguish the two cases, by demanding that
the difference jH�z� �H�CDM�z�j be larger than the error
�H�z�. For comparison, the relative difference between the
Hubble parameter in a flat pure CDM universe and in a flat
�CDM universe with �� � 0:7 is 10% at z � 0:1, 19% at
z � 0:2, and 27% at z � 0:3.

Our method tests directly the expansion speed of the
universe at all the redshifts where we measure the lumi-
nosity distance dipole. Any deviation in H�z� from theo-
retical predictions will be immediately detected. If we
measure only the usual monopole of the luminosity dis-
tance then a well-localized deviation may easily be
smeared out and lost by the additional integration.
FIG. 3 (color online). We show the number of supernovae
needed to measure H�z� with an accuracy of 30%, in a flat
�CDM universe with �� � 0:7, as a function of the redshift and
for two different values of the intrinsic error �m � 0:1 and
�m � 0:15.
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FIG. 4 (color online). We show the number of supernovae
needed to differentiate the measured Hubble parameter H�z�
from the theoretical one in a flat �CDM universe H�CDM�z�,
as a function of the relative difference jH�z��H�CDM�z�j

H�CDM�z�
, for red-

shifts z � 0:1, z � 0:2, and z � 0:3 and intrinsic error �m �
0:1.
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Looking at the figures it is readily apparent that accuracy
is best at low redshift. This is not necessarily a drawback,
as dark energy is expected to dominate at low redshift and
so is best observed in this redshift range. However, below
z & 0:04 nonlinear effects probably become important
which may lead to systematic effects in the distribution
of supernovae. Future baryon oscillation surveys will pri-
marily target higher redshifts, z * 0:5, where they reach
maximum sensitivity. The angular distribution of low-
redshift supernovae is therefore a complementary probe.
Also the number of supernovae needed seems quite real-
istic. Very large surveys which plan to measure of the order
of 104 to 105 supernovae are presently discussed [11].

As a final remark, even though uniform sky coverage is
not essential, a survey designed to measure the dipole
should optimally cover a large part of the sky. If we only
observe supernovae in one small patch, it may be difficult
to extract the dipole without contamination from lensing
which dominates over the dipole for l * 100 and z * 1
(see [4]). If possible, the observed supernovae should cover
the regions of the sky aligned and antialigned with the
CMB dipole where the luminosity difference is maximal.

In this Letter we have discussed a novel method for
measuring directly the expansion history of the Universe.
We have shown that the dipole of the supernova distribu-
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tion on the sky is proportional to 1=H�z�. It is therefore
possible to extract directly H�z� from the dipole. This is
advantageous compared to the monopole of the luminosity
and angular diameter distance which measure only the
integral over the Hubble parameter. With a present data
set of 44 low-redshift supernovae we have measured the
dipole and it is in good agreement with the CMB.

We have also discussed the accuracy with which we can
measure the Hubble parameter, and found that we need a
large number of supernovae. However, future planned
surveys are expected to deliver these. Given that most
surveys concentrate on high-redshift supernovae while
the dipole is most useful at moderate redshifts, z & 0:5,
it may be preferable to propose a dedicated low-z super-
nova survey.

Finally, the dipole is a quantity independent of the
monopole. Given a survey with a sufficient number of
supernovae it is possible to measure both. This improves
the measurement of the dark energy properties and addi-
tionally serves as a cross-check for systematic errors.
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