
PRL 96, 191301 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
19 MAY 2006
Hidden Supersymmetry of Domain Walls and Cosmologies

Kostas Skenderis
Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

Paul K. Townsend
Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge,

Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
(Received 14 March 2006; published 16 May 2006)
0031-9007=
We show that all domain-wall solutions of gravity coupled to scalar fields for which the world-volume
geometry is Minkowski or anti–de Sitter admit Killing spinors, and satisfy corresponding first-order
equations involving a superpotential determined by the solution. By analytic continuation, all flat or
closed Friedmann-Lemaı̂tre-Robertson-Walker cosmologies are shown to satisfy similar first-order
equations arising from the existence of ‘‘pseudo Killing’’ spinors.
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Scalar fields arise naturally in many supergravity theo-
ries and the domain-wall solutions they allow are important
for the holographic interpretation of renormalization group
flow. They have also been invoked in the context of infla-
tionary cosmology, and as a possible source of ‘‘dark
energy.’’ A general theoretical framework for these studies,
in spacetime dimension D � d� 1, is provided by the
Lagrangian density

L �
���������������
� detg

p
�R� 1

2j@�j2 � V���� (1)

for metric g, with scalar curvature R, and scalar fields �
taking values in some Riemannian target space, on which
there is some potential energy function V. One purpose of
this Letter is to exploit a close connection between domain-
wall and cosmological solutions of the above model, but
our initial focus will be domain walls because a domain-
wall solution may be a supersymmetric solution of some
supergravity theory for which (1) is a consistent truncation.
In practice, this involves a determination of whether the
solution admits Killing spinors, which are nonzero spinor
fields annihilated by a covariant derivative operator con-
structed from the standard spin connection and a ‘‘super-
potential,’’ which determines the potential V by a simple
formula involving first derivatives.

There are many ‘‘flat’’ domain-wall solutions, with
Minkowski d-dimensional geometry, that have long been
known to be supersymmetric solutions of some supergrav-
ity theory. More recently, beginning with [1], supersym-
metric curved domain-wall solutions have been found.
Such results all depend on the specific superpotential of
the supergravity theory under study, even though only the
potential V is relevant to the solution itself. Moreover, the
superpotential is not uniquely defined by the potential,
which means that there can be many supergravity theories
with the same metric-scalar truncation; a solution that is
non-supersymmetric for one supergravity theory could be a
supersymmetric solution of another one. This state of
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affairs suggests a supergravity-independent definition of
a ‘‘supersymmetric’’ domain-wall solution as one that
admits a Killing spinor for some superpotential function
that yields the given potential V [2–6]; the superpotential
then defines a ‘‘fake supergravity’’ [4]. This definition
raises two related questions: which domain-wall solutions
of a given model, with specified target space and potential
V, are supersymmetric in the above sense, and which
models admit such solutions?

These questions have been raised and partially answered
in the recent literature [4–6]. Here we present an essen-
tially complete answer to both questions for domain-wall
solutions that are foliated (or ‘‘sliced’’) by d-dimensional
de Sitter (dS), Minkowski, or anti–de Sitter (adS) spaces.
Moreover, the answer is very simple, and model indepen-
dent. All Minkowski and adS-sliced domain walls are
supersymmetric for any model of the form (1), and the
only dS-sliced domain walls that are supersymmetric are
the dS foliation ofD-dimensional Minkowski or adS space.
There are some caveats, in particular, the result may be
true only locally (in the many scalar case) or ‘‘piecewise’’
(if the superpotential turns out to be multivalued).

Although cosmologies cannot be supersymmetric (with
the exception of anti–de Sitter space), first-order equations
for flat cosmologies arise in the Hamilton-Jacobi formal-
ism [7] and their similarity with Bogomolnyi-Prasad-
Somerfeld (BPS) equations has been noted [8]. In addi-
tion, many previous works have obtained cosmological
solutions of particular models by analytic continuation
of domain-wall solutions. Here we establish a general
result: for every domain-wall solution (of the type specified
above) there is a corresponding Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) cosmology, of the same model
but with opposite sign potential. The generality of our
result for domain walls then implies that all flat or closed
FLRW cosmologies solve first-order ‘‘BPS-type’’ equa-
tions involving a superpotential determined by the solu-
tion, despite the fact that they are not supersymmetric. We
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will show that this result arises from the existence of
‘‘pseudo Killing’’ spinors.

As we wish to consider both domain walls and cosmol-
ogies, it is convenient to introduce a sign� such that � � 1
for domain walls and � � �1 for cosmologies. Then, in
either case, the metric for the solutions of interest here can
be put in the form

ds2
D � ��fe�’�2dz2 � e2�’

�
�

�dr2

1� �kr2 � r
2d�2

�

�
(2)

where d�2
� is either (for � � �1) a unit radius

SO�d�-invariant metric on the (d� 1) sphere, or (for � �
1) a unit radius SO�1; d� 1�-invariant metric on the
(d� 1)-dimensional hyperboloid. For � � �1, z is a
time variable and the constant z hypersurfaces are maxi-
mally symmetric spaces with inverse radius of curvature k
normalized to k � �1; 0; 1. For � � 1, r is the time vari-
able and the constant z hypersurfaces are maximally sym-
metric d-dimensional spacetimes with inverse radius of
curvature k � �1; 0; 1, and hence have adS, Minkowski,
or dS geometry, respectively. In suitable coordinates for the
metric d�2

�, the D-dimensional domain-wall and FLRW
cosmology metrics are related by a double-analytic
continuation.

We have allowed for an arbitrary function f�z� in the
ansatz (2) in order to maintain z-parametrization invari-
ance, and we have introduced for later convenience the
D-dependent constants

� � �D� 1��; � � 1=
������������������������������������
2�D� 1��D� 2�

p
: (3)

The scalar fields must be taken to be functions only of z in
order to preserve the spacetime isometries. The field equa-
tions then reduce to equations for the variables (’;�) that
are equivalent to the Euler-Lagrange equations of the
effective Lagrangian

L �
�
2
f�1� _’2 � j _�j2� � fe2�’

�
V �

k

2�2 e
�2�’

�
; (4)

where the overdot indicates differentiation with respect to
z. Note that a change in the sign� can be compensated by a
change of sign of both V and k, because the overall sign of
L has no effect on the equations of motion. It follows that
for every domain-wall solution of a model with scalar
potential V there is a corresponding FLRW cosmology,
with the opposite sign of k if k � 0, for a model with the
opposite sign of V.

For simplicity of presentation, we begin by supposing
that there is only one field �. Later we will show how our
results generalize to the multiscalar case. We will also fix
the z reparametrization by the gauge choice f � e��’. In
this gauge, and for a one-scalar model, the Euler-Lagrange
equations of L are equivalent to the equations

�’ � �� _�2 � �k�=��e�2�’; �� � �� _’ _���V0;

(5)
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where the prime indicates differentiation with respect to �,
together with the constraint

_’ 2 � _�2 � �2�
�
V �

k

2�2 e
�2�’

�
: (6)

If V has an extremum that allows a solution with _� � 0
then the domain-wall or cosmological solution is actually a
dS, Minkowski, or adS vacuum solution. So we shall
assume that _� is not identically zero. In fact, we shall
assume initially that _� is nowhere zero, returning subse-
quently to consider what happens when _� has isolated
zeros. Given that _� � 0, there is an inverse function z���
that allows any function of z to be considered as a function
of �. In particular, given any solution with �k 	 0 for
which _� � 0, we may define a complex function

Z��� � !���ei���� (7)

by the formulas

! �
1

2�

��������������������������������
_’2 �

k�

�2 e
�2�’

s
; (8)

�0 � 

�����������
�k�

p �
�
�

�
_�e��’

�
_’2 �

k�

�2 e
�2�’

�
�1
: (9)

Note that �0 � 0 for k � 0 so in this case we may choose
� � 0, and hence Z � !.

We claim that the function Z��� constructed according
to the above prescription satisfies

V � 2��jZ0j2 � �2jZj2� (10)

as a consequence of the equations of motion, and further
that the solution used to construct Z��� satisfies

_� � 
2jZ0j; _’ � �
2�
jZ0j

Re� �ZZ0�;

�k�e2�’ � �2�� Im� �ZZ0�=jZ0j�2:
(11)

In fact, these equations imply the second-order ones.
Inserting (11) in (10) yields the constraint (6). Differen-
tiating the first of (11) and using (10) and (11) yields the
second of Eq. (5). Finally, the first of Eq. (5) follows di-
rectly from the second of Eq. (11) upon using the defini-
tions of!; � in (8) and (9). There is a consistency condition
between the second and third of Eq. (11): _’ computed from
the third should agree with the second. This requires

Im � �Z0�Z00 � ��Z�� � 0: (12)

Remarkably, this is an identity for (!; �) defined by (8) and
(9), so all k� 	 0 solutions satisfy first-order equations, for
either choice of the sign �.

As a concrete illustration of the above, consider theD �
3 model with V � ��, and the k � �� solution [6]

e’ � 1� e
��
2
p
z; e�� � 1� e�

��
2
p
z: (13)
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For � � 1 this yields an adS-sliced ‘‘separatrix wall’’
solution that interpolates between an adS2 � R linear-
dilaton vacuum (at z � �1) and the adS3 vacuum (at z �
1). For � � �1 it yields a k � 1 FLRW cosmology that
interpolates between an Einstein static universe (supported
by a constant � kinetic energy) in the far past and the dS3

vacuum in the far future. Note that �< 0 for this solution,
so that (1� e�) is positive. One finds that

!��� �

��������������������������������
1� e� �

1

2
e2�

s
;

���� � arctan�e��
���������������������
2�1� e��

p
�

�
1���
2
p log

�
1�

���������������
1� e�
p

1�
���������������
1� e�
p

�
� �0;

(14)

for arbitrary, and irrelevant, constant �0.
So far, we have considered domain walls and cosmolo-

gies on an equal footing, but we now restrict to the domain-
wall case, � � 1. For this case, we claim that the first-order
Eq. (11) are BPS equations that guarantee the existence of
a Killing spinor field. It would be sufficient for our pur-
poses to consider a complex superpotential modeled on
minimal D � 4 supergravity but to make use of previous
work on, or inspired by, minimal D � 5 supergravity we
consider instead a real Sp1-triplet superpotential W��� and
a Killing spinor equation of the form [4,5,9]

�D� � ��W  ����� � 0; �� � 0; 1; . . . ; d�; (15)

where D� is the standard covariant derivative on spinors,
and � is the triplet of Pauli matrices. In the context of
minimal D � 5 supergravity, � is an Sp1-Majorana spinor
and W is real. The reality of W is also required for the
‘‘gamma trace’’ of the Killing spinor equation to be a Dirac
equation with a hermitian ‘‘mass’’ matrix, and this condi-
tion can (and should) be imposed as part of the definition of
a ‘‘fake’’ Killing spinor. With this understood, we may
allow � in (15) to be a Dirac spinor in arbitrary spacetime
dimension D.

For a solution of the assumed form, the Killing spinor
Eq. (15) reduces to the equations

@z� � ��W  ��z�;

D̂m� � e�’�̂m���=2� _’�z � ��W  ���;
(16)

where �z is a constant matrix that squares to the identity,
and a hat indicates restriction to the (normalized) world-
volume metric, so �̂m are the world-volume Dirac matri-
ces. The integrability conditions of these equations were
discussed in Ref. [4] and we review this analysis here. The
second of the Eq. (16) has the integrability condition

_’ 2 � 4�2jWj2 � �k=�2�e�2�’: (17)

We will now suppose that the potential V is given in terms
of the triplet superpotential by the relation
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V � 2�jW0j2 � �2jWj2�: (18)

At this point, the reader may guess how W is determined
by the complex function Z introduced earlier, but no guess-
work is needed: the relation between the two will emerge
from consistency requirements. Given the constraint (6)
and the above form of the potential, (17) implies that

_� � 
2jW0j: (19)

Differentiating (17) and using the equations of motion to
eliminate �’, and then eliminating V in favor of W, we
deduce the first-order equation

_’ � �2��W W0�=jW0j (20)

and the condition

jW �W0j2 � �k�D� 2�2e�2�’jW0j2: (21)

It follows from this condition that a dS-sliced (k � 1)
domain-wall can admit Killing spinors only if W is con-
stant, which requires _� � 0 and implies that V is a non-
positive constant; in this case theD-dimensional spacetime
is a dS foliation of either Minkowski or adS space.
Excluding these trivial cases, we conclude that a Killing
spinor requires either k � 0 or k � �1, and that k � 0
requires W �W0 � 0, which implies that W � Wn for a
singlet superpotential W��� and a fixed 3-vector n.

The Killing spinor Eq. (16) also have the joint integra-
bility condition

� _�� 2W0  ��z�� � 0; (22)

which has the supergravity interpretation as the condition
of vanishing supersymmetry variation of the superpartner
to �. This condition must be satisfied for all z; it is trivially
satisfied if _� � 0 since (19) then implies that W is con-
stant. Otherwise, it implies the projection

�1
 ��� � 0; � � �W0=jW0j�  ��z: (23)

For k � 0 we have � � �n  ���z, which is a constant
traceless matrix that squares to the identity matrix, imply-
ing preservation of 1=2 supersymmetry. Otherwise � is not
a constant matrix and differentiation with respect to z of
the projection condition yields the consistency condition

�W00 � ��W� �W0 � 0: (24)

This condition implies that W and all its derivatives are
coplanar, so that W � Xn� Ym for fixed orthonormal
3-vectors n and m, and functions X���, Y���. The first-
order equations (19) and (20) are then equivalent to the
first-order equation (11) if we make the identification Z �
X� iY. The integrability condition (17) is then equiva-
lent to the equation (8) for !���, and (21) is similarly
equivalent to (11), which is itself equivalent to the equation
(9) for ����.

Thus, the complex function Z appearing in (11) deter-
mines the triplet superpotential W. In terms of Z, the
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consistency condition (24) is just (12) and, as already
mentioned, this is satisfied identically. This means that
all flat or adS-sliced domain-wall solutions of the one-
scalar model for which _� does not vanish preserve 1=2
supersymmetry for a superpotential that is determined by
the solution, in the sense that they admit Killing spinors for
this superpotential subject to (at most) a 1=2 supersymme-
try projection.

The condition of nonvanishing _� was needed because
our construction of the superpotential assumed the exis-
tence of a function z��� inverse to ��z�. While this condi-
tion may be satisfied for many domain-wall solutions,
others will typically have isolated values of z for which
_� � 0 (for example, the ‘‘�-perturbed Janus solutions’’

described in Ref. [6] all have one point at which _� � 0).
When this happens the inverse function z��� will become
multivalued, with different branches in intervals of z on
either side of a zero of _��z�. In other words, it will still be
true that the domain-wall solution is supersymmetric for a
superpotential determined by the solution, but this super-
potential will be a multivalued function and more than one
branch will be needed. Thus understood, our claim remains
true piecewise even when _��z� has zeros.

So far we have restricted our analysis to single-scalar
models, and at first sight it might seem unlikely that the
main result could generalize to models with an arbitrary
number of scalars and an arbitrary potential for them.
However, a simple argument shows that it does general-
ize, at least locally. The key observation [5] is that for
any domain-wall solution, the functions ��z� define a
curve in the scalar field target space, and this curve may
be chosen as one of the ‘‘axes’’ of a new set of curvilinear
coordinates on the target space, in which case the equations
defining the curve state that all scalar fields but one, call it
�, are constant. On this curve the potential is a function
only of � and the problem is thus reduced to the one
already solved, except of course that the change of target
space coordinates needed to achieve this may not be valid
globally. However, our result, that all flat or adS-sliced
domain-wall solutions are supersymmetric, remains true
locally.

Although our Killing spinor results were derived assum-
ing real triplet superpotential, inspired by D � 5 super-
gravity, they are valid for any D. We could have obtained
these results by considering a simpler Killing spinor equa-
tion with a complex superpotential, such as one would find
in D � 4 by dimensional reduction of the D � 5 case
(although the discussion to follow on cosmology would
then be more involved). No new possibilities can arise from
considering more general superpotentials (as confirmed by
the results of Ref. [10] for a 5-vector superpotential)
because novelty for our purposes would require k � 1
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and there is no physically acceptable supersymmetric ex-
tension of the dS isometry algebra. It is therefore satisfying
that, with the exception of the dS foliations of Minkowski
or adS (for which the isometry algebra is enlarged), we
have not found any supersymmetric k � 1 domain walls
(although this does not preclude the possibility of first-
order equations [11]).

We conclude with some comments on the cosmology
case. Recall that any domain-wall solution has an associ-
ated cosmological solution with flipped signs of V and k.
At first it appears that such solutions cannot have Killing
spinors because �z now squares to minus the identity, so
(23) has no nonzero solutions. However, we must also take
W ! iW in order to flip the signs of V and k, as is clear
from (18) and (21). We now have what appears to be a
Killing spinor for any k � 0 cosmological solution, but the
W ! iW step replaces the initial Hermitian mass matrix
W  � in the gamma-traced Killing spinor equation by an
anti-Hermitian one. As explained earlier, this means that
we no longer have a bona fide Killing spinor, although we
do have what might be called a pseudo Killing spinor. It is
unclear what the implications of the existence of pseudo
Killing spinors are, but their existence nevertheless ex-
plains why k � 0 FLRW cosmologies are also driven by
first-order equations. The implications of this fact remain
to be explored.
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