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Giant Colloidal Diffusivity on Corrugated Optical Vortices
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A single colloidal sphere circulating around a periodically modulated optical vortex trap can enter a
dynamical state in which it intermittently alternates between freely running around the ringlike optical
vortex and becoming trapped in local potential energy minima. Velocity fluctuations in this randomly
switching state still are characterized by a linear Einstein-like diffusion law, but with an effective diffusion
coefficient that is enhanced by more than 2 orders of magnitude.
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Brownian particles moving on tilted washboard poten-
tials exhibit two well-characterized limiting behaviors [1].
When the potential energy wells are deeper than the ther-
mal energy scale, diffusing particles become trapped in
local minima. Their long-time self-diffusion coefficient
vanishes in this limit. At the other extreme, tilting the
washboard steeply enough to eliminate potential energy
barriers allows particles to run freely downhill. Because
diffusion is decoupled from translation at low Reynolds
numbers, a freely running particle exhibits displacement
fluctuations characterized by its equilibrium self-diffusion
coefficient, D0. Between the trapped and running limits,
particles intermittently switch between the two states,
drifting downhill at a mean speed set by the rate at which
particles are thermally activated over barriers. The trajec-
tory, x�t�, of such an intermittently trapped Brownian
particle nevertheless is predicted [2– 4] to satisfy the usual
Einstein relation,

lim
t!1
hx2�t�i � hx�t�i2 � 2Dt; (1)

where D is an effective diffusion coefficient. Equally sur-
prising is the prediction [2–4] that D can be enhanced by
orders of magnitude over D0 at the crossover from locked
to running states.

In this Letter, we provide experimental confirmation of
substrate-mediated giant diffusivity by tracking the mo-
tions of a single colloidal sphere traveling on tilted wash-
board potentials created with corrugated optical vortex
traps [5–7]. The optically driven particle undergoes normal
diffusion even in the intermittent regime, with an effective
diffusion coefficient that increases more than a hundred-
fold at the point of maximum intermittency.

Our samples consist of colloidal polystyrene spheres
2a � 1:48 �m in diameter (Bangs Laboratories, lot num-
ber 6064) dispersed in water and confined within a glass
sample volume formed by bonding a No. 1 coverslip to a
microscope slide. This assembly is mounted on the stage of
a Zeiss S100TV Axiovert inverted optical microscope for
observation. Images are captured by an NEC TI-324II
video camera and recorded on a Panasonic DMR-E100H
digital video recorder for processing and analysis. The
polystyrene spheres sediment into a layer roughly
06=96(19)=190601(4) 19060
200 nm above the coverslip [8]. Individual particles are
clearly resolved with a 100� NA 1.4 SPlan-Apo oil im-
mersion objective lens that also is used to project holo-
graphic optical traps [7,9–12] into the sample. We tracked
particles’ motions with 10 nm spatial resolution at 1=30 s
intervals using standard methods of digital video micros-
copy [13]. From measurements on freely diffusing spheres,
we estimate [13,14] a wall-corrected self-diffusion coeffi-
cient of D0 � 0:19� 0:02 �m2=s.

Tilted washboard potentials were created from super-
positions of ringlike optical traps known as optical vortices
[15–17]. Each optical vortex in this superposition is
formed from a helical mode of light [18] whose fields,

 ‘�r� � u�r�ei‘�; (2)

are characterized by a radially symmetric amplitude pro-
file, u�r�, and a phase ’�r� � ‘� proportional to the angle
� about the optical axis. The wave fronts of such a beam
take the form of an ‘-fold helix whose pitch determines the
radius, R‘, of the projected ring of light [5,19]. A typical
optical vortex with ‘ � 40 and R‘ � 4:2� 0:1 �m ap-
pears in Fig. 1(a). The focused ring of light acts like an
optical gradient force trap, drawing nearby dielectric par-
ticles to its circumference. The helical pitch also endows
each photon in the beam with ‘@ orbital angular momen-
tum [18] that can be transferred to an illuminated object.
The resulting torque causes a trapped object to circulate
around the ring [20].

Superposing optical vortices with opposite helicities, ‘
and �‘, creates corrugated optical vortices such as the
examples in Figs. 1(b) and 1(c) whose circumferential
profiles are sinusoidally modulated [6] with 2‘ intensity
maxima [7]. An even superposition creates a so-called
optical cogwheel [21] consisting of bright spots arranged
in a circle of radius R‘. This superposition carries no net
orbital angular momentum and thus exerts no torque. A
more general superposition,

 �r� �
 ‘�r� �

����
�
p

 �‘�r��������������
1� �
p ; (3)

still exerts a torque, but also has a sinusoidal corrugation
whose depth is set by 0 � � � 1. The two limits, � � 0
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FIG. 2 (color online). Angular displacement over 1=30 s for a
single 1:48 �m diameter polystyrene particle circulating around
corrugated optical vortices at ‘ � 40, P � 1:5 W, and � � 0,
0.36, 0.5, and 1.0.

FIG. 1. (a) Optical vortex with ‘ � 40. (b) and (c) Corrugated
optical vortices, � � 0:1 and 1.0, respectively. (d) Circum-
ferential intensity profiles, I���, measured from (a), (b), and
(c) at the radius of maximum intensity, R‘.
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and � � 1, correspond to an ideal optical vortex and an
optical cogwheel, respectively. We vary � by calculating
phase-only holograms encoding the desired superposition
using the direct search algorithm [12] and projecting the
results with a Hamamatsu X7550 PAL-SLM spatial light
modulator. Our experiments were performed with 1.5 W of
laser light at a wavelength of � � 532 nm from a Coherent
Verdi laser.

The images of corrugated optical vortices in Fig. 1 were
obtained by placing a mirror in the microscope’s focal
plane and capturing the reflected light with the objective
lens. Circumferential intensity profiles, I��� � j �R‘; ��j2,
measured from these images are plotted in Fig. 1(d) and
reveal deviations in the depth of corrugation from the
design to be smaller than 5%. Additional intensity varia-
tions of roughly 10% arise from imperfections in the
optical train and so are independent of �. These variations
have an even smaller effect on the potential energy land-
scape experienced by the particle because the particle’s
finite extent tends to smooth them over [22,23].

A photon in the superposed beam has probability 1=�1�
�� of having orbital angular momentum �‘@ and proba-
bility �=�1� �� of having orbital angular momentum
�‘@. The corrugated optical vortex therefore carries a
local orbital angular momentum flux �‘�=c�	�1� ��=�1�
��
I���, where c is the speed of light. A fraction of this
orbital angular momentum is transferred to a trapped ob-
ject, and drives it around the ring. Circumferential intensity
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gradients, @�I���, modulate this torque, and also induce
optical gradient forces. The overall circumferential force
therefore has the form

F��� � F0	A��� � B��� cos�2‘�� � ����
; (4)

with A��� � �1� ��=�1� �� and B��� �

2
������������������������
��A2 � �2�

p
=�1� ��. The force scale, F0, is propor-

tional to the laser beam’s power and depends on the parti-
cle’s shape, size, and composition [22,23]. Given this, the
washboard’s tilt depends only on the excess, A���, of right-
helical photons in the corrugated optical vortex. The sinu-
soidal term, by contrast, includes a material- and
geometry-dependent constant, �, accounting for the rela-
tive strength of the optical gradient force. We have omitted
an irrelevant phase from the sinusoidal term’s argument,
and will ignore the landscape’s roughness, ����, in what
follows.

Figure 2 shows brief samples from typical single-
particle trajectories in the trapped, running, and intermit-
tent regimes. Here, we have plotted the angular displace-
ment, ���t����t��t����t� over the period �t�1=30 s
of one video frame. The driving term vanishes in the
cogwheel limit, � � 1, and the particle remains trapped
in a single local minimum of the potential, where it under-
goes thermally driven fluctuations about its equilibrium
position. In the freely running limit, � � 0, it circulates
around the ring nearly 3 times a second. Periodic features
in the running state’s displacements result from the particle
passing repeatedly over the disordered landscape, ����.
From these, we estimate hj����j2i � 0:01. At intermediate
values of �, the particle makes thermally activated tran-
sitions between trapped and running states so that its
trajectory is characterized by intermittent bursts of motion
resembling random telegraph switching noise.
1-2
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FIG. 3 (color online). (a) Dependence of circulation frequency
on depth of corrugations. The solid curve is a fit to Eq. (5)
yielding � � 0:19 and F0 � 1:5 pN. The dashed curve is an
estimate for !0��� from Eq. (4). (b) Diffusion coefficients
estimated from the inset plots of mean-squared displacements
(triangles) show a dramatic enhancement around � � 0:4.
Squares denote equivalent results obtained from Eq. (6). Long-
term self-diffusion coefficients are immeasurably small in the
trapped state for �  0:6. The solid curve is a guide to the eye.
The dashed curve is a comparison to Eq. (7) using parameters
from (a).
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Averaging ���t� over a period long compared with the
trajectory’s correlation times yields an estimate for the
mean circulation rate !���, plotted in Fig. 3(a). The net
orbital angular momentum flux driving this circulation
decreases as � increases, and we estimate the free circu-
lation rate to be !0��� � A���!�0� from Eq. (4). This is
drawn as a dashed curve in Fig. 3(a). The solid curve in
Fig. 3(a) is a comparison to Stratonovich’s exact expres-
sion for the mean drift velocity [3,4],

!��� �
1� e�2�	R‘F0A���

R‘
R

2�
0 I����

d�
2�

;

where I���� �
R‘
D0

e�	V���

�
Z 2�

0
e�	V���
�e�	R‘F0A���
d


(5)

and where V0��� � F0	B��� cos�2‘�� � ����
.
Slow instrumental drifts in !��� amounting to a few

percent over several minutes can be estimated [24] and
subtracted off to reveal the linear growth of mean-squared
positional fluctuations shown in the inset to Fig. 3(b). The
associated effective diffusion coefficients, D���, are plot-
ted as triangles in Fig. 3(b). These values agree well with
those obtained [3,4] from fluctuations in the time, Tj���,
required to complete the jth circuit,

D��� � 2�2R2
‘

hTj���2ij � hTj���i2j
hTj���i3j

; (6)

which are plotted as squares.
The measured effective diffusion coefficient agrees with

the equilibrium value, D��� � D0, when the particle is in
the free-running state, �< 0:2. Larger values of � corre-
spond to deeper corrugations that tend to trap the particle
for longer periods. Longer periods of localization might be
expected to reduce the particle’s effective diffusion coeffi-
cient. Indeed, D��� � 0 when the particle is trapped alto-
gether for �  0:6. Instead, intermittent trapping
dramatically increases the effective diffusion coefficient,
with D exceeding 100 D0 at � � 0:4.

This extraordinary substrate-mediated enhancement of
the effective diffusivity is accounted for by the exact for-
mulation, analogous to Eq. (5), due to Reimann et al. [3,4],

D � D0

R
2�
0 I2

����I����
d�
2�

	
R

2�
0 I����

d�
2�


3
: (7)

Analysis of Eq. (7) reveals that peak diffusivity should
occur when the driving force is just barely balanced by
the periodic modulation. Neglecting ����, this occurs
when � satisfies A��� � B���. Estimating the peak posi-
tion to be � � 0:41� 0:01, we obtain � � 0:19� 0:01.
The sharp peak inD��� therefore can be used to probe how
absorption and scattering transfer orbital angular momen-
tum to objects trapped in optical vortices. The form for
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D��� predicted by Eq. (7) is plotted as the dashed curve in
Fig. 3(b). Whereas Eq. (5) agrees well with !���, Eq. (7)
describes a much broader and weaker peak in D��� than is
observed experimentally. It appears, therefore, that D��� is
exceptionally sensitive to details of the potential energy
landscape.

Histograms of angular displacements in Fig. 4 provide
insights into this sensitivity. A freely running particle’s
displacements fall into a nearly Gaussian distribution,
whose width and peak position both increase linearly in
time. In the intermittent state, by contrast, particles spend
much of their time localized in traps, so that the short-time
displacement probability is highly non-Gaussian, as shown
in Fig. 4(a). Because the potential energy landscape is
periodic and the effective particle density is fixed, the
displacement probability must evolve into a Gaussian dis-
tribution through the central limit theorem. This self-
1-3
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FIG. 4. Displacement histograms in the intermittent regime at
� � 0:36. (a) Short time, t � 33 ms. (b) Long time, t � hTi �
1:3 s.
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averaging can be effective over as little as a single mean
first-passage time hTi, as shown in Fig. 4(b). This accounts
for the essentially normal diffusion evident in the inset to
Fig. 3(b).

The peaked structure of the probability distribution in
Fig. 4(a) also suggests a qualitative explanation for the
overall enhancement of diffusivity. A particle undergoing
intermittent transport has a probability p�t� of being
trapped for time t, and a probability 1� p�t� of traveling
with an angular speed !0 set by the washboard’s overall
tilt. The mean drift speed in this highly simplified two-state
model is ! � �1� p�!0. The running state is character-
ized by thermal fluctuations in the mean-squared angular
speed of magnitude D0=�R2

‘t�. This, however, can be domi-
nated by fluctuations due to thermally activated transitions
between the stationary and running states. Taking t �
�=�‘!0� to be the time required to travel between potential
wells in the running state,

D �
R2
‘t

2
�h!2i � h!i2� (8)

�
p�1� p�

2

�R2
‘

‘
!0 � �1� p�D0: (9)

The effective diffusion coefficient therefore can be made
arbitrarily large by increasing !0, with an upper limit set
by the onset of inertial effects.

Giant diffusivity can degrade the performance of sorting
methods such as gel electrophoresis and optical fractiona-
tion that exploit differential transport through a structured
medium. In particular, the relative dispersal �x=L of a
sample that has traveled a mean distance L through the
landscape at speed v is

�������������������
2D=�Lv�

p
, which can diverge with

the effective diffusion coefficient D. This effect may be
responsible for anomalous band broadening in electrochro-
matography [25]. Figure 3(b) demonstrates, however, that
undesirable dispersal due to giant diffusivity can be over-
come by more rapid driving, and that a small increase in
driving force can have a disproportionately large effect on
sorting resolution. On the other hand, substrate-mediated
giant diffusivity should be useful for thoroughly mixing
19060
and dispersing materials in microfluidic environments, and
might also provide a strategy for enhanced mixing in
granular materials.
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